多目标元启发式优化CMOS LNA电路

M. Kotti, A. Sallem, Mariam Bougharriou, M. Fakhfakh, M. Loulou
{"title":"多目标元启发式优化CMOS LNA电路","authors":"M. Kotti, A. Sallem, Mariam Bougharriou, M. Fakhfakh, M. Loulou","doi":"10.1109/SM2ACD.2010.5672305","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) has shown to be an efficient, robust and simple optimization algorithm. Recently, the mono-objective version of the PSO algorithm was adapted and used to optimize only one performance of RF circuits, mainly the voltage gain of low noise amplifiers. In this work, we propose to optimize more than one performance function of LNAs while satisfying imposed and inherent constraints. We deal with generating the Pareto front linking two conflicting performances of a LNA, namely the voltage gain and the noise figure. The adopted idea consists of using the symbolic expressions of the scattering parameters ((S21) for the voltage gain, and (S11, S22) for input and output matching). For this purpose we use a Multi-Objective Optimization algorithm PSO incorporating the mechanism of the crowding distance technique (MOPSO-CD). Comparisons with results obtained using NSGA II are presented and ADS simulations, using 0.35µm CMOS technology, are given to show good reached results.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Optimizing CMOS LNA circuits through multi-objective meta heuristics\",\"authors\":\"M. Kotti, A. Sallem, Mariam Bougharriou, M. Fakhfakh, M. Loulou\",\"doi\":\"10.1109/SM2ACD.2010.5672305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) has shown to be an efficient, robust and simple optimization algorithm. Recently, the mono-objective version of the PSO algorithm was adapted and used to optimize only one performance of RF circuits, mainly the voltage gain of low noise amplifiers. In this work, we propose to optimize more than one performance function of LNAs while satisfying imposed and inherent constraints. We deal with generating the Pareto front linking two conflicting performances of a LNA, namely the voltage gain and the noise figure. The adopted idea consists of using the symbolic expressions of the scattering parameters ((S21) for the voltage gain, and (S11, S22) for input and output matching). For this purpose we use a Multi-Objective Optimization algorithm PSO incorporating the mechanism of the crowding distance technique (MOPSO-CD). Comparisons with results obtained using NSGA II are presented and ADS simulations, using 0.35µm CMOS technology, are given to show good reached results.\",\"PeriodicalId\":442381,\"journal\":{\"name\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SM2ACD.2010.5672305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

粒子群算法是一种简单、高效、鲁棒的优化算法。最近,单目标粒子群算法被用于优化射频电路的一个性能,主要是低噪声放大器的电压增益。在这项工作中,我们提出优化LNAs的多个性能函数,同时满足强加的和固有的约束。我们处理产生帕累托前连接两个相互冲突的性能的LNA,即电压增益和噪声系数。所采用的思想包括使用散射参数的符号表达式((S21)表示电压增益,(S11, S22)表示输入和输出匹配)。为此,我们采用了一种融合了拥挤距离技术机制的多目标优化算法(PSO)。并与采用NSGA II的结果进行了比较,并采用0.35µm CMOS技术进行了ADS仿真,结果表明取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing CMOS LNA circuits through multi-objective meta heuristics
Particle swarm optimization (PSO) has shown to be an efficient, robust and simple optimization algorithm. Recently, the mono-objective version of the PSO algorithm was adapted and used to optimize only one performance of RF circuits, mainly the voltage gain of low noise amplifiers. In this work, we propose to optimize more than one performance function of LNAs while satisfying imposed and inherent constraints. We deal with generating the Pareto front linking two conflicting performances of a LNA, namely the voltage gain and the noise figure. The adopted idea consists of using the symbolic expressions of the scattering parameters ((S21) for the voltage gain, and (S11, S22) for input and output matching). For this purpose we use a Multi-Objective Optimization algorithm PSO incorporating the mechanism of the crowding distance technique (MOPSO-CD). Comparisons with results obtained using NSGA II are presented and ADS simulations, using 0.35µm CMOS technology, are given to show good reached results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信