{"title":"基于特征面的特征向量在不同损伤下的比较","authors":"Aristodemos Pnevmatikakis, L. Polymenakos","doi":"10.1109/ICPR.2004.1334111","DOIUrl":null,"url":null,"abstract":"We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparison of eigenface-based feature vectors under different impairments\",\"authors\":\"Aristodemos Pnevmatikakis, L. Polymenakos\",\"doi\":\"10.1109/ICPR.2004.1334111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of eigenface-based feature vectors under different impairments
We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.