基于特征面的特征向量在不同损伤下的比较

Aristodemos Pnevmatikakis, L. Polymenakos
{"title":"基于特征面的特征向量在不同损伤下的比较","authors":"Aristodemos Pnevmatikakis, L. Polymenakos","doi":"10.1109/ICPR.2004.1334111","DOIUrl":null,"url":null,"abstract":"We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparison of eigenface-based feature vectors under different impairments\",\"authors\":\"Aristodemos Pnevmatikakis, L. Polymenakos\",\"doi\":\"10.1109/ICPR.2004.1334111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了一种新的基于特征脸的人脸识别方法的性能。具体来说,我们执行DCT预处理,然后进行PCA-LDA组合。在亮度、光照方向、发型、服装、表情、头部方向和添加的噪声等因素的影响下,我们将新方法与现有方法(PCA、PCA- lda、DCT-PCA)进行了比较。本文概述了特征提取方法。结果是使用两个不同的人脸数据库获得的:斯特林大学的阿伯丁数据库和剑桥大学的ORL数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of eigenface-based feature vectors under different impairments
We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信