{"title":"客观评价了四种SAR图像分割算法","authors":"Jason B. Gregga, S. Gustafson, G. Power","doi":"10.1117/12.438228","DOIUrl":null,"url":null,"abstract":"Because of the large number of SAR images the Air Force generates and the dwindling number of available human analysts, automated methods must be developed. A key step towards automated SAR image analysis is image segmentation. There are many segmentation algorithms, but they have not been tested on a common set of images, and there are no standard test methods. This paper evaluates four SAR image segmentation algorithms by running them on a common set of data and objectively comparing them to each other and to human segmentations. This objective comparison uses a multi-measure approach with a set of master segmentations as ground truth. The measure results are compared to a Human Threshold, which defines the performance of human segmentors compared to the master segmentations. Also, methods that use the multi-measures to determine the best algorithm are developed. These methods show that of the four algorithms, Statistical Curve Evolution produces the best segmentations; however, none of the algorithms are superior to human segmentations. Thus, with the Human Threshold and Statistical Curve Evolution as benchmarks, this paper establishes a new and practical framework for testing SAR image segmentation algorithms.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Objective evaluation of four SAR image segmentation algorithms\",\"authors\":\"Jason B. Gregga, S. Gustafson, G. Power\",\"doi\":\"10.1117/12.438228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the large number of SAR images the Air Force generates and the dwindling number of available human analysts, automated methods must be developed. A key step towards automated SAR image analysis is image segmentation. There are many segmentation algorithms, but they have not been tested on a common set of images, and there are no standard test methods. This paper evaluates four SAR image segmentation algorithms by running them on a common set of data and objectively comparing them to each other and to human segmentations. This objective comparison uses a multi-measure approach with a set of master segmentations as ground truth. The measure results are compared to a Human Threshold, which defines the performance of human segmentors compared to the master segmentations. Also, methods that use the multi-measures to determine the best algorithm are developed. These methods show that of the four algorithms, Statistical Curve Evolution produces the best segmentations; however, none of the algorithms are superior to human segmentations. Thus, with the Human Threshold and Statistical Curve Evolution as benchmarks, this paper establishes a new and practical framework for testing SAR image segmentation algorithms.\",\"PeriodicalId\":133868,\"journal\":{\"name\":\"SPIE Defense + Commercial Sensing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.438228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.438228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Objective evaluation of four SAR image segmentation algorithms
Because of the large number of SAR images the Air Force generates and the dwindling number of available human analysts, automated methods must be developed. A key step towards automated SAR image analysis is image segmentation. There are many segmentation algorithms, but they have not been tested on a common set of images, and there are no standard test methods. This paper evaluates four SAR image segmentation algorithms by running them on a common set of data and objectively comparing them to each other and to human segmentations. This objective comparison uses a multi-measure approach with a set of master segmentations as ground truth. The measure results are compared to a Human Threshold, which defines the performance of human segmentors compared to the master segmentations. Also, methods that use the multi-measures to determine the best algorithm are developed. These methods show that of the four algorithms, Statistical Curve Evolution produces the best segmentations; however, none of the algorithms are superior to human segmentations. Thus, with the Human Threshold and Statistical Curve Evolution as benchmarks, this paper establishes a new and practical framework for testing SAR image segmentation algorithms.