{"title":"Fibonacci和Narayana序列的二元变异与通用码","authors":"Cagla Celemoglu","doi":"10.53570/jnt.1202341","DOIUrl":null,"url":null,"abstract":"In this study, we worked on the third-order bivariate variant of the Fibonacci universal code and the second-order bivariate variant of the Narayana universal code, depending on two negative integer variables u and v. We then showed in tables these codes for 1≤k≤100, u=-1,-2,…,-20, and v=-2,-3,…,-21 (u and v are consecutive, v","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes\",\"authors\":\"Cagla Celemoglu\",\"doi\":\"10.53570/jnt.1202341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we worked on the third-order bivariate variant of the Fibonacci universal code and the second-order bivariate variant of the Narayana universal code, depending on two negative integer variables u and v. We then showed in tables these codes for 1≤k≤100, u=-1,-2,…,-20, and v=-2,-3,…,-21 (u and v are consecutive, v\",\"PeriodicalId\":347850,\"journal\":{\"name\":\"Journal of New Theory\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53570/jnt.1202341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1202341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes
In this study, we worked on the third-order bivariate variant of the Fibonacci universal code and the second-order bivariate variant of the Narayana universal code, depending on two negative integer variables u and v. We then showed in tables these codes for 1≤k≤100, u=-1,-2,…,-20, and v=-2,-3,…,-21 (u and v are consecutive, v