迈向高分辨率大尺度多视点立体

Hoang-Hiep Vu, R. Keriven, Patrick Labatut, Jean-Philippe Pons
{"title":"迈向高分辨率大尺度多视点立体","authors":"Hoang-Hiep Vu, R. Keriven, Patrick Labatut, Jean-Philippe Pons","doi":"10.1109/CVPR.2009.5206617","DOIUrl":null,"url":null,"abstract":"Boosted by the Middlebury challenge, the precision of dense multi-view stereovision methods has increased drastically in the past few years. Yet, most methods, although they perform well on this benchmark, are still inapplicable to large-scale data sets taken under uncontrolled conditions. In this paper, we propose a multi-view stereo pipeline able to deal at the same time with very large scenes while still producing highly detailed reconstructions within very reasonable time. The keys to these benefits are twofold: (i) a minimum s-t cut based global optimization that transforms a dense point cloud into a visibility consistent mesh, followed by (ii) a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization and adaptive resolution. Our method has been tested on numerous large-scale outdoor scenes. The accuracy of our reconstructions is also measured on the recent dense multi-view benchmark proposed by Strecha et al., showing our results to compare more than favorably with the current state-of-the-art.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"279","resultStr":"{\"title\":\"Towards high-resolution large-scale multi-view stereo\",\"authors\":\"Hoang-Hiep Vu, R. Keriven, Patrick Labatut, Jean-Philippe Pons\",\"doi\":\"10.1109/CVPR.2009.5206617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boosted by the Middlebury challenge, the precision of dense multi-view stereovision methods has increased drastically in the past few years. Yet, most methods, although they perform well on this benchmark, are still inapplicable to large-scale data sets taken under uncontrolled conditions. In this paper, we propose a multi-view stereo pipeline able to deal at the same time with very large scenes while still producing highly detailed reconstructions within very reasonable time. The keys to these benefits are twofold: (i) a minimum s-t cut based global optimization that transforms a dense point cloud into a visibility consistent mesh, followed by (ii) a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization and adaptive resolution. Our method has been tested on numerous large-scale outdoor scenes. The accuracy of our reconstructions is also measured on the recent dense multi-view benchmark proposed by Strecha et al., showing our results to compare more than favorably with the current state-of-the-art.\",\"PeriodicalId\":386532,\"journal\":{\"name\":\"2009 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"279\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2009.5206617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 279

摘要

在米德尔伯里挑战的推动下,密集多视图立体视觉方法的精度在过去几年中急剧提高。然而,大多数方法虽然在这个基准上表现良好,但仍然不适用于在不受控制的条件下采集的大规模数据集。在本文中,我们提出了一种多视图立体管道,能够同时处理非常大的场景,同时在非常合理的时间内产生非常详细的重建。这些好处的关键是双重的:(i)基于最小s-t切割的全局优化,将密集的点云转换为可见性一致的网格,其次是(ii)基于网格的变分细化,捕获小细节,巧妙地处理照片一致性,正则化和自适应分辨率。我们的方法已经在许多大型户外场景中进行了测试。我们的重建精度也在Strecha等人最近提出的密集多视图基准上进行了测量,表明我们的结果与当前最先进的技术相比更加有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards high-resolution large-scale multi-view stereo
Boosted by the Middlebury challenge, the precision of dense multi-view stereovision methods has increased drastically in the past few years. Yet, most methods, although they perform well on this benchmark, are still inapplicable to large-scale data sets taken under uncontrolled conditions. In this paper, we propose a multi-view stereo pipeline able to deal at the same time with very large scenes while still producing highly detailed reconstructions within very reasonable time. The keys to these benefits are twofold: (i) a minimum s-t cut based global optimization that transforms a dense point cloud into a visibility consistent mesh, followed by (ii) a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization and adaptive resolution. Our method has been tested on numerous large-scale outdoor scenes. The accuracy of our reconstructions is also measured on the recent dense multi-view benchmark proposed by Strecha et al., showing our results to compare more than favorably with the current state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信