鲁棒手机识别降噪自编码器中的吸引子操作

Shaghayegh Reza, S. Seyyedsalehi, Seyyede Zohreh Seyyedsalehi
{"title":"鲁棒手机识别降噪自编码器中的吸引子操作","authors":"Shaghayegh Reza, S. Seyyedsalehi, Seyyede Zohreh Seyyedsalehi","doi":"10.1109/ICEE52715.2021.9543707","DOIUrl":null,"url":null,"abstract":"Autoencoder Neural Networks can filter unwanted variabilities; however, their performance will degrade if their attractors and their basins of attraction are not correctly adjusted. This paper proposes a heuristic method to increase attractors shaped in desired points and expand their basins of attraction. These well-formed attractors can compensate variabilities and hence increase the chance of robust recognition. This method's effectiveness is shown on synthetic data and is compared with another attractor manipulation method called the cyclic method. This method's performance on the phone recognition task has shown 22.1 percent relative increase in the number of attractors and 4.2 percent relative improvement in the phone error rate on the Farsdat database.","PeriodicalId":254932,"journal":{"name":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Attractor Manipulation in Denoising Autoencoders for Robust Phone Recognition\",\"authors\":\"Shaghayegh Reza, S. Seyyedsalehi, Seyyede Zohreh Seyyedsalehi\",\"doi\":\"10.1109/ICEE52715.2021.9543707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoencoder Neural Networks can filter unwanted variabilities; however, their performance will degrade if their attractors and their basins of attraction are not correctly adjusted. This paper proposes a heuristic method to increase attractors shaped in desired points and expand their basins of attraction. These well-formed attractors can compensate variabilities and hence increase the chance of robust recognition. This method's effectiveness is shown on synthetic data and is compared with another attractor manipulation method called the cyclic method. This method's performance on the phone recognition task has shown 22.1 percent relative increase in the number of attractors and 4.2 percent relative improvement in the phone error rate on the Farsdat database.\",\"PeriodicalId\":254932,\"journal\":{\"name\":\"2021 29th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 29th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE52715.2021.9543707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE52715.2021.9543707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自编码器神经网络可以过滤不需要的变量;但是,如果不正确调整吸引子和吸引盆,它们的性能就会下降。本文提出了一种启发式方法来增加在期望点上形成的吸引子,并扩大它们的吸引盆地。这些形式良好的吸引子可以补偿变量,从而增加鲁棒识别的机会。在合成数据上证明了该方法的有效性,并与另一种称为循环法的吸引子操作方法进行了比较。该方法在手机识别任务上的表现表明,在Farsdat数据库上,吸引子的数量相对增加了22.1%,手机错误率相对提高了4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractor Manipulation in Denoising Autoencoders for Robust Phone Recognition
Autoencoder Neural Networks can filter unwanted variabilities; however, their performance will degrade if their attractors and their basins of attraction are not correctly adjusted. This paper proposes a heuristic method to increase attractors shaped in desired points and expand their basins of attraction. These well-formed attractors can compensate variabilities and hence increase the chance of robust recognition. This method's effectiveness is shown on synthetic data and is compared with another attractor manipulation method called the cyclic method. This method's performance on the phone recognition task has shown 22.1 percent relative increase in the number of attractors and 4.2 percent relative improvement in the phone error rate on the Farsdat database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信