砌体机器人运动学与轨迹规划

Jing-Shan Zhao, Song-Tao Wei, Xiao-Cheng Sun, Junjie Ji
{"title":"砌体机器人运动学与轨迹规划","authors":"Jing-Shan Zhao, Song-Tao Wei, Xiao-Cheng Sun, Junjie Ji","doi":"10.1115/1.4062734","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a mechanical system for a masonry robot comprising four parts: an omnidirectional mobile platform, a lifting platform, a six-degrees-of-freedom manipulator, and a grasping mechanism. The robot is specifically designed to carry out brick masonry on construction sites and is equipped to move bricks smoothly with slurry to their intended location. To prevent mortar from being shaken off the brick, the grasping mechanism is required to maintain optimal velocity and optimized acceleration. To implement online trajectory planning with velocity and acceleration constraints, the paper suggests an approach based on screw theory for resolving the inverse kinematics of the masonry robot. This method allows the inverse kinematic equations to be used to determine a unique solution for all joints of the redundant driver of the masonry robot. The approach and strategy are validated through numerical simulations of trajectory planning using a fifth-degree polynomial.","PeriodicalId":164923,"journal":{"name":"Journal of Autonomous Vehicles and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics and Trajectory Planning of the Masonry Robot\",\"authors\":\"Jing-Shan Zhao, Song-Tao Wei, Xiao-Cheng Sun, Junjie Ji\",\"doi\":\"10.1115/1.4062734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper proposes a mechanical system for a masonry robot comprising four parts: an omnidirectional mobile platform, a lifting platform, a six-degrees-of-freedom manipulator, and a grasping mechanism. The robot is specifically designed to carry out brick masonry on construction sites and is equipped to move bricks smoothly with slurry to their intended location. To prevent mortar from being shaken off the brick, the grasping mechanism is required to maintain optimal velocity and optimized acceleration. To implement online trajectory planning with velocity and acceleration constraints, the paper suggests an approach based on screw theory for resolving the inverse kinematics of the masonry robot. This method allows the inverse kinematic equations to be used to determine a unique solution for all joints of the redundant driver of the masonry robot. The approach and strategy are validated through numerical simulations of trajectory planning using a fifth-degree polynomial.\",\"PeriodicalId\":164923,\"journal\":{\"name\":\"Journal of Autonomous Vehicles and Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Vehicles and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Vehicles and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种砌体机器人的机械系统,由四部分组成:全向移动平台、升降平台、六自由度机械手和抓取机构。该机器人专门设计用于在建筑工地进行砌砖工作,并配备了将砖块与浆料顺利移动到预定位置的设备。为了防止砂浆从砖上脱落,要求抓取机构保持最佳速度和最佳加速度。为了实现速度和加速度约束下的在线轨迹规划,提出了一种基于螺旋理论的砌体机器人运动学逆解方法。该方法允许利用运动学逆方程确定砌体机器人冗余驱动器所有关节的唯一解。通过五次多项式轨迹规划的数值仿真,验证了该方法和策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematics and Trajectory Planning of the Masonry Robot
This paper proposes a mechanical system for a masonry robot comprising four parts: an omnidirectional mobile platform, a lifting platform, a six-degrees-of-freedom manipulator, and a grasping mechanism. The robot is specifically designed to carry out brick masonry on construction sites and is equipped to move bricks smoothly with slurry to their intended location. To prevent mortar from being shaken off the brick, the grasping mechanism is required to maintain optimal velocity and optimized acceleration. To implement online trajectory planning with velocity and acceleration constraints, the paper suggests an approach based on screw theory for resolving the inverse kinematics of the masonry robot. This method allows the inverse kinematic equations to be used to determine a unique solution for all joints of the redundant driver of the masonry robot. The approach and strategy are validated through numerical simulations of trajectory planning using a fifth-degree polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信