通过性能建模了解应用程序

G. Marin, J. Mellor-Crummey
{"title":"通过性能建模了解应用程序","authors":"G. Marin, J. Mellor-Crummey","doi":"10.1109/PCCC.2007.358880","DOIUrl":null,"url":null,"abstract":"Tuning the performance of applications requires understanding the interactions between code and target architecture. This paper describes a performance modeling approach that not only makes accurate predictions about the behavior of an application on a target architecture for different inputs, but also provides guidance for tuning by high-lighting the factors that limit performance in each section of a program. We introduce two new performance metrics that estimate the maximum gain expected from tuning different parts of an application, or from increasing the number of machine resources. We show how this metric helped identify a bottleneck in the ASCI SweepSD benchmark where the lack of instruction-level parallelism limited performance. Transforming one frequently executed loop to ameliorate this bottleneck improved performance by 16% on an Itanium2 system.","PeriodicalId":356565,"journal":{"name":"2007 IEEE International Performance, Computing, and Communications Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Application Insight Through Performance Modeling\",\"authors\":\"G. Marin, J. Mellor-Crummey\",\"doi\":\"10.1109/PCCC.2007.358880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning the performance of applications requires understanding the interactions between code and target architecture. This paper describes a performance modeling approach that not only makes accurate predictions about the behavior of an application on a target architecture for different inputs, but also provides guidance for tuning by high-lighting the factors that limit performance in each section of a program. We introduce two new performance metrics that estimate the maximum gain expected from tuning different parts of an application, or from increasing the number of machine resources. We show how this metric helped identify a bottleneck in the ASCI SweepSD benchmark where the lack of instruction-level parallelism limited performance. Transforming one frequently executed loop to ameliorate this bottleneck improved performance by 16% on an Itanium2 system.\",\"PeriodicalId\":356565,\"journal\":{\"name\":\"2007 IEEE International Performance, Computing, and Communications Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Performance, Computing, and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCC.2007.358880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Performance, Computing, and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.2007.358880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

调优应用程序的性能需要理解代码和目标体系结构之间的交互。本文描述了一种性能建模方法,该方法不仅对不同输入的目标体系结构上的应用程序的行为做出准确预测,而且还通过突出显示程序每个部分中限制性能的因素,为调优提供指导。我们引入了两个新的性能指标,用于估计调优应用程序的不同部分或增加机器资源数量所期望的最大增益。我们展示了这个指标如何帮助识别ASCI SweepSD基准测试中的瓶颈,其中缺乏指令级并行性限制了性能。通过转换一个频繁执行的循环来改善这个瓶颈,Itanium2系统的性能提高了16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Insight Through Performance Modeling
Tuning the performance of applications requires understanding the interactions between code and target architecture. This paper describes a performance modeling approach that not only makes accurate predictions about the behavior of an application on a target architecture for different inputs, but also provides guidance for tuning by high-lighting the factors that limit performance in each section of a program. We introduce two new performance metrics that estimate the maximum gain expected from tuning different parts of an application, or from increasing the number of machine resources. We show how this metric helped identify a bottleneck in the ASCI SweepSD benchmark where the lack of instruction-level parallelism limited performance. Transforming one frequently executed loop to ameliorate this bottleneck improved performance by 16% on an Itanium2 system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信