初等函数近似使用优化的切比雪夫系数和截断乘法器的最有效位

M. Sadeghian, J. Stine
{"title":"初等函数近似使用优化的切比雪夫系数和截断乘法器的最有效位","authors":"M. Sadeghian, J. Stine","doi":"10.1109/MWSCAS.2012.6292054","DOIUrl":null,"url":null,"abstract":"This paper presents a method for computing elementary function using optimized number of most significant bits of coefficients along with truncated multipliers for designing linear and quadratic interpolators. The method proposed optimizes the initial coefficient values, which leads to minimize the maximum absolute error of the interpolator output by using a Chebyshev series approximation. The resulting designs can be utilized for any approximation for functions up and beyond 32-bits (IEEE single precision) of precision with smaller requirements for table lookup sizes. Designs for linear and quadratic interpolators that implement f (x) = 1/x are presented and analyzed, although the method can be extended to other functions. This paper demonstrates that optimal coefficient values with high precision and smaller lookup table sizes can be optimally compared to standard coefficients for interpolators.","PeriodicalId":324891,"journal":{"name":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Elementary function approximation using optimized most significant bits of Chebyshev coefficients and truncated multipliers\",\"authors\":\"M. Sadeghian, J. Stine\",\"doi\":\"10.1109/MWSCAS.2012.6292054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for computing elementary function using optimized number of most significant bits of coefficients along with truncated multipliers for designing linear and quadratic interpolators. The method proposed optimizes the initial coefficient values, which leads to minimize the maximum absolute error of the interpolator output by using a Chebyshev series approximation. The resulting designs can be utilized for any approximation for functions up and beyond 32-bits (IEEE single precision) of precision with smaller requirements for table lookup sizes. Designs for linear and quadratic interpolators that implement f (x) = 1/x are presented and analyzed, although the method can be extended to other functions. This paper demonstrates that optimal coefficient values with high precision and smaller lookup table sizes can be optimally compared to standard coefficients for interpolators.\",\"PeriodicalId\":324891,\"journal\":{\"name\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2012.6292054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2012.6292054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用系数最有效位优化数和截断乘数计算初等函数的方法,用于设计线性和二次插值器。该方法通过对初始系数值进行优化,利用切比雪夫级数逼近使插补器输出的最大绝对误差最小。由此产生的设计可以用于32位以上(IEEE单精度)精度的任何近似函数,对表查找大小的要求较小。提出并分析了实现f (x) = 1/x的线性插值器和二次插值器的设计,尽管该方法可以扩展到其他函数。本文证明了与插值器的标准系数相比,具有高精度和较小查找表大小的最优系数值是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elementary function approximation using optimized most significant bits of Chebyshev coefficients and truncated multipliers
This paper presents a method for computing elementary function using optimized number of most significant bits of coefficients along with truncated multipliers for designing linear and quadratic interpolators. The method proposed optimizes the initial coefficient values, which leads to minimize the maximum absolute error of the interpolator output by using a Chebyshev series approximation. The resulting designs can be utilized for any approximation for functions up and beyond 32-bits (IEEE single precision) of precision with smaller requirements for table lookup sizes. Designs for linear and quadratic interpolators that implement f (x) = 1/x are presented and analyzed, although the method can be extended to other functions. This paper demonstrates that optimal coefficient values with high precision and smaller lookup table sizes can be optimally compared to standard coefficients for interpolators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信