基于ART网络的路径规划可解释目标识别

Yue Hu, Kai Xu, Budhitama Subagdja, A. Tan, Quanjun Yin
{"title":"基于ART网络的路径规划可解释目标识别","authors":"Yue Hu, Kai Xu, Budhitama Subagdja, A. Tan, Quanjun Yin","doi":"10.1109/ijcnn52387.2021.9534409","DOIUrl":null,"url":null,"abstract":"Goal recognition for path planning is an important task of intention identification and situation awareness, requiring an observer to predict the goal of an evader given observations of its movements. While existing models based on planning or Markov Decision Process (MDP) show superior performance over traditional library based methods, they require much effort in model design and can hardly provide legible decision rules for their users. To make the system more user-friendly while preserving accuracy of goal inference, this paper proposes a novel self-organizing neural network based inference model, which learns compact rule sets through generalizing the streaming observations of an evader. More critically, the system manifests a high level of interpretability with the linguistic if-then rule base, making it easily comprehensible for human decision makers. We conducted extensive experiments on a large-scale real-world road network. Results show that the proposed model produces accuracy comparable to those of two state-of-the-art methods while uniquely providing legible inference rules and strong robustness against multiple goals with missing data.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpretable Goal Recognition for Path Planning with ART Networks\",\"authors\":\"Yue Hu, Kai Xu, Budhitama Subagdja, A. Tan, Quanjun Yin\",\"doi\":\"10.1109/ijcnn52387.2021.9534409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goal recognition for path planning is an important task of intention identification and situation awareness, requiring an observer to predict the goal of an evader given observations of its movements. While existing models based on planning or Markov Decision Process (MDP) show superior performance over traditional library based methods, they require much effort in model design and can hardly provide legible decision rules for their users. To make the system more user-friendly while preserving accuracy of goal inference, this paper proposes a novel self-organizing neural network based inference model, which learns compact rule sets through generalizing the streaming observations of an evader. More critically, the system manifests a high level of interpretability with the linguistic if-then rule base, making it easily comprehensible for human decision makers. We conducted extensive experiments on a large-scale real-world road network. Results show that the proposed model produces accuracy comparable to those of two state-of-the-art methods while uniquely providing legible inference rules and strong robustness against multiple goals with missing data.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ijcnn52387.2021.9534409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ijcnn52387.2021.9534409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

路径规划中的目标识别是意图识别和态势感知的一项重要任务,它要求观察者在观察到逃避者运动的情况下预测其目标。虽然现有的基于规划或马尔可夫决策过程的模型比传统的基于库的方法表现出更好的性能,但它们在模型设计上需要付出很大的努力,并且很难为用户提供清晰的决策规则。为了在保证目标推理准确性的同时使系统更加人性化,本文提出了一种基于自组织神经网络的推理模型,该模型通过对回避器的流观测进行泛化来学习紧凑规则集。更重要的是,该系统通过语言的if-then规则库表现出高水平的可解释性,使其易于被人类决策者理解。我们在一个大规模的真实道路网络上进行了广泛的实验。结果表明,该模型的准确性可与两种最先进的方法相媲美,同时独特地提供了清晰的推理规则,并且对缺失数据的多个目标具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Goal Recognition for Path Planning with ART Networks
Goal recognition for path planning is an important task of intention identification and situation awareness, requiring an observer to predict the goal of an evader given observations of its movements. While existing models based on planning or Markov Decision Process (MDP) show superior performance over traditional library based methods, they require much effort in model design and can hardly provide legible decision rules for their users. To make the system more user-friendly while preserving accuracy of goal inference, this paper proposes a novel self-organizing neural network based inference model, which learns compact rule sets through generalizing the streaming observations of an evader. More critically, the system manifests a high level of interpretability with the linguistic if-then rule base, making it easily comprehensible for human decision makers. We conducted extensive experiments on a large-scale real-world road network. Results show that the proposed model produces accuracy comparable to those of two state-of-the-art methods while uniquely providing legible inference rules and strong robustness against multiple goals with missing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信