用非线性回归估计图像的固有分量

M. Tappen, E. Adelson, W. Freeman
{"title":"用非线性回归估计图像的固有分量","authors":"M. Tappen, E. Adelson, W. Freeman","doi":"10.1109/CVPR.2006.114","DOIUrl":null,"url":null,"abstract":"Images can be represented as the composition of multiple intrinsic component images, such as shading, albedo, and noise images. In this paper, we present a method for estimating intrinsic component images from a single image, which we apply to the problems of estimating shading and albedo images and image denoising. Our method is based on learning estimators that predict filtered versions of the desired image. Unlike previous approaches, our method does not require unnatural discretizations of the problem. We also demonstrate how to learn a weighting function that properly weights the local estimates when constructing the estimated image. For shading estimation, we introduce a new training set of real-world images. The accuracy of our method is measured both qualitatively and quantitatively, showing better performance on the shading/albedo separation problem than previous approaches. The performance on denoising is competitive with the current state of the art.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Estimating Intrinsic Component Images using Non-Linear Regression\",\"authors\":\"M. Tappen, E. Adelson, W. Freeman\",\"doi\":\"10.1109/CVPR.2006.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images can be represented as the composition of multiple intrinsic component images, such as shading, albedo, and noise images. In this paper, we present a method for estimating intrinsic component images from a single image, which we apply to the problems of estimating shading and albedo images and image denoising. Our method is based on learning estimators that predict filtered versions of the desired image. Unlike previous approaches, our method does not require unnatural discretizations of the problem. We also demonstrate how to learn a weighting function that properly weights the local estimates when constructing the estimated image. For shading estimation, we introduce a new training set of real-world images. The accuracy of our method is measured both qualitatively and quantitatively, showing better performance on the shading/albedo separation problem than previous approaches. The performance on denoising is competitive with the current state of the art.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

图像可以表示为多个内禀分量图像的组合,如阴影、反照率和噪声图像。本文提出了一种从单幅图像中估计固有分量图像的方法,并将其应用于阴影和反照率图像的估计以及图像去噪问题。我们的方法是基于学习估计器来预测期望图像的过滤版本。与以前的方法不同,我们的方法不需要对问题进行非自然离散化。我们还演示了如何学习一个加权函数,在构造估计图像时适当地对局部估计进行加权。对于阴影估计,我们引入了一个新的真实世界图像训练集。我们的方法的准确性进行了定性和定量的测量,在遮阳/反照率分离问题上比以前的方法表现出更好的性能。在去噪方面的性能与目前的技术水平相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Intrinsic Component Images using Non-Linear Regression
Images can be represented as the composition of multiple intrinsic component images, such as shading, albedo, and noise images. In this paper, we present a method for estimating intrinsic component images from a single image, which we apply to the problems of estimating shading and albedo images and image denoising. Our method is based on learning estimators that predict filtered versions of the desired image. Unlike previous approaches, our method does not require unnatural discretizations of the problem. We also demonstrate how to learn a weighting function that properly weights the local estimates when constructing the estimated image. For shading estimation, we introduce a new training set of real-world images. The accuracy of our method is measured both qualitatively and quantitatively, showing better performance on the shading/albedo separation problem than previous approaches. The performance on denoising is competitive with the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信