基于飞机惯性传感的载荷状态估计扩展卡尔曼滤波

Vicko Prkačin, Ivana Palunko, I. Petrović
{"title":"基于飞机惯性传感的载荷状态估计扩展卡尔曼滤波","authors":"Vicko Prkačin, Ivana Palunko, I. Petrović","doi":"10.1109/AIRPHARO52252.2021.9571038","DOIUrl":null,"url":null,"abstract":"In this paper we consider an aerial vehicle transporting a suspended payload and propose an Extended Kalman filter for payload state estimation. The filter is based on derived system dynamics and relies solely on onboard IMU measurements. Effectiveness of the method is verified in numerical simulations and experimentally.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extended Kalman filter for payload state estimation utilizing aircraft inertial sensing\",\"authors\":\"Vicko Prkačin, Ivana Palunko, I. Petrović\",\"doi\":\"10.1109/AIRPHARO52252.2021.9571038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider an aerial vehicle transporting a suspended payload and propose an Extended Kalman filter for payload state estimation. The filter is based on derived system dynamics and relies solely on onboard IMU measurements. Effectiveness of the method is verified in numerical simulations and experimentally.\",\"PeriodicalId\":415722,\"journal\":{\"name\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIRPHARO52252.2021.9571038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了一种悬浮载荷的飞行器,提出了一种用于载荷状态估计的扩展卡尔曼滤波器。该滤波器基于导出的系统动力学,仅依赖于板载IMU测量。通过数值模拟和实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Kalman filter for payload state estimation utilizing aircraft inertial sensing
In this paper we consider an aerial vehicle transporting a suspended payload and propose an Extended Kalman filter for payload state estimation. The filter is based on derived system dynamics and relies solely on onboard IMU measurements. Effectiveness of the method is verified in numerical simulations and experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信