Jianfeng Ye, Qing Wang, B.-Y. Ma, Yongbao Wu, Lei Xue
{"title":"基于多智能体深度确定性策略梯度算法的多智能体追逃博弈追捕策略","authors":"Jianfeng Ye, Qing Wang, B.-Y. Ma, Yongbao Wu, Lei Xue","doi":"10.1109/ICUS55513.2022.9986838","DOIUrl":null,"url":null,"abstract":"This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pursuit Strategy for Multi-Agent Pursuit-Evasion Game via Multi-Agent Deep Deterministic Policy Gradient Algorithm\",\"authors\":\"Jianfeng Ye, Qing Wang, B.-Y. Ma, Yongbao Wu, Lei Xue\",\"doi\":\"10.1109/ICUS55513.2022.9986838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9986838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Pursuit Strategy for Multi-Agent Pursuit-Evasion Game via Multi-Agent Deep Deterministic Policy Gradient Algorithm
This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method.