基于类别感知的无监督域自适应航空图像语义分割

Ying Chen, Xu Ouyang, Kaiyue Zhu, G. Agam
{"title":"基于类别感知的无监督域自适应航空图像语义分割","authors":"Ying Chen, Xu Ouyang, Kaiyue Zhu, G. Agam","doi":"10.1145/3486635.3491069","DOIUrl":null,"url":null,"abstract":"Semantic segmentation using deep neural networks is an important component of aerial image understanding. However, models trained using data from one domain may not generalize well to another domain due to a domain shift between data distributions in the two domains. Such a domain gap is common in aerial images due to large visual appearance changes, and so substantial accuracy loss may occur when using a trained model for inference on new data. In this paper, we propose a novel unsupervised domain adaptation framework to address domain shift in the context of semantic segmentation of aerial images. To this end, we address the problem of domain shift by learning class-aware distribution differences between the source and target domains. Further, we employ entropy minimization on the target domain to produce high-confidence predictions. We demonstrate the effectiveness of the proposed approach using a challenge segmentation dataset by ISPRS, and show improvement over state-of-the-art methods.","PeriodicalId":448866,"journal":{"name":"Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semantic Segmentation in Aerial Images Using Class-Aware Unsupervised Domain Adaptation\",\"authors\":\"Ying Chen, Xu Ouyang, Kaiyue Zhu, G. Agam\",\"doi\":\"10.1145/3486635.3491069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation using deep neural networks is an important component of aerial image understanding. However, models trained using data from one domain may not generalize well to another domain due to a domain shift between data distributions in the two domains. Such a domain gap is common in aerial images due to large visual appearance changes, and so substantial accuracy loss may occur when using a trained model for inference on new data. In this paper, we propose a novel unsupervised domain adaptation framework to address domain shift in the context of semantic segmentation of aerial images. To this end, we address the problem of domain shift by learning class-aware distribution differences between the source and target domains. Further, we employ entropy minimization on the target domain to produce high-confidence predictions. We demonstrate the effectiveness of the proposed approach using a challenge segmentation dataset by ISPRS, and show improvement over state-of-the-art methods.\",\"PeriodicalId\":448866,\"journal\":{\"name\":\"Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486635.3491069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486635.3491069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于深度神经网络的语义分割是航空图像理解的重要组成部分。然而,使用来自一个领域的数据训练的模型可能不能很好地推广到另一个领域,因为两个领域的数据分布之间存在领域转移。这种领域差距在航空图像中很常见,因为视觉外观变化很大,所以当使用训练模型对新数据进行推理时,可能会出现大量的精度损失。在本文中,我们提出了一种新的无监督域自适应框架来解决航空图像语义分割中的域转移问题。为此,我们通过学习源领域和目标领域之间的类感知分布差异来解决领域转移问题。此外,我们在目标域上使用熵最小化来产生高置信度的预测。我们使用ISPRS的挑战分割数据集证明了所提出方法的有效性,并展示了对最先进方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Segmentation in Aerial Images Using Class-Aware Unsupervised Domain Adaptation
Semantic segmentation using deep neural networks is an important component of aerial image understanding. However, models trained using data from one domain may not generalize well to another domain due to a domain shift between data distributions in the two domains. Such a domain gap is common in aerial images due to large visual appearance changes, and so substantial accuracy loss may occur when using a trained model for inference on new data. In this paper, we propose a novel unsupervised domain adaptation framework to address domain shift in the context of semantic segmentation of aerial images. To this end, we address the problem of domain shift by learning class-aware distribution differences between the source and target domains. Further, we employ entropy minimization on the target domain to produce high-confidence predictions. We demonstrate the effectiveness of the proposed approach using a challenge segmentation dataset by ISPRS, and show improvement over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信