改进的二阶Reed-Muller码解码

K. Ivanov, R. Urbanke
{"title":"改进的二阶Reed-Muller码解码","authors":"K. Ivanov, R. Urbanke","doi":"10.1109/ITW44776.2019.8988970","DOIUrl":null,"url":null,"abstract":"In this paper, we consider low-complexity decoding of second-order Reed-Muller codes. A class of polynomial-time algorithms, based on the projections onto first-order codes, is studied. An old representative of this class, originally developed for binary symmetric channel, is brought back to life and applied for AWGN channel. Some improvements are proposed, which bring the performance closer to ML bound with lower complexity compared to other algorithms. Another potentially fruitful property is returning the list of codewords. In addition, a simple method for complexity reduction and its impact on the performance are demonstrated.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved decoding of second-order Reed-Muller codes\",\"authors\":\"K. Ivanov, R. Urbanke\",\"doi\":\"10.1109/ITW44776.2019.8988970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider low-complexity decoding of second-order Reed-Muller codes. A class of polynomial-time algorithms, based on the projections onto first-order codes, is studied. An old representative of this class, originally developed for binary symmetric channel, is brought back to life and applied for AWGN channel. Some improvements are proposed, which bring the performance closer to ML bound with lower complexity compared to other algorithms. Another potentially fruitful property is returning the list of codewords. In addition, a simple method for complexity reduction and its impact on the performance are demonstrated.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8988970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究二阶Reed-Muller码的低复杂度译码。研究了一类基于一阶码投影的多项式时间算法。该类的一个老代表,最初是为二进制对称信道开发的,被复活并应用于AWGN信道。提出了一些改进,使性能更接近ML边界,与其他算法相比,复杂度更低。另一个可能有效的属性是返回码字列表。此外,还演示了一种简单的降低复杂性的方法及其对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved decoding of second-order Reed-Muller codes
In this paper, we consider low-complexity decoding of second-order Reed-Muller codes. A class of polynomial-time algorithms, based on the projections onto first-order codes, is studied. An old representative of this class, originally developed for binary symmetric channel, is brought back to life and applied for AWGN channel. Some improvements are proposed, which bring the performance closer to ML bound with lower complexity compared to other algorithms. Another potentially fruitful property is returning the list of codewords. In addition, a simple method for complexity reduction and its impact on the performance are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信