{"title":"改进了闭环性能,并采用基于进化算法的PID控制器控制信号","authors":"Alireza Aarabi, M. Shahbazian, Mohsen Hadian","doi":"10.1109/CARPATHIANCC.2015.7145034","DOIUrl":null,"url":null,"abstract":"Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of their simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damage the system but evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, genetic algorithm (GA) and particle swarm optimization (PSO). To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.","PeriodicalId":187762,"journal":{"name":"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improved closed loop performance and control signal using evolutionary algorithms based PID controller\",\"authors\":\"Alireza Aarabi, M. Shahbazian, Mohsen Hadian\",\"doi\":\"10.1109/CARPATHIANCC.2015.7145034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of their simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damage the system but evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, genetic algorithm (GA) and particle swarm optimization (PSO). To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.\",\"PeriodicalId\":187762,\"journal\":{\"name\":\"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CARPATHIANCC.2015.7145034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 16th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2015.7145034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved closed loop performance and control signal using evolutionary algorithms based PID controller
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of their simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damage the system but evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, genetic algorithm (GA) and particle swarm optimization (PSO). To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.