基于颜色深度特征融合的多目LSTM人体检测

Hengduo Li, Jun Liu, Guyue Zhang, Yuan Gao, Yirui Wu
{"title":"基于颜色深度特征融合的多目LSTM人体检测","authors":"Hengduo Li, Jun Liu, Guyue Zhang, Yuan Gao, Yirui Wu","doi":"10.1109/ICIP.2017.8296412","DOIUrl":null,"url":null,"abstract":"With the development of depth cameras such as Kinect and Intel Realsense, RGB-D based human detection receives continuous research attention due to its usage in a variety of applications. In this paper, we propose a new Multi-Glimpse LSTM (MG-LSTM) network, in which multi-scale contextual information is sequentially integrated to promote the human detection performance. Furthermore, we propose a feature fusion strategy based on our MG-LSTM network to better incorporate the RGB and depth information. To the best of our knowledge, this is the first attempt to utilize LSTM structure for RGB-D based human detection. Our method achieves superior performance on two publicly available datasets.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Multi-glimpse LSTM with color-depth feature fusion for human detection\",\"authors\":\"Hengduo Li, Jun Liu, Guyue Zhang, Yuan Gao, Yirui Wu\",\"doi\":\"10.1109/ICIP.2017.8296412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of depth cameras such as Kinect and Intel Realsense, RGB-D based human detection receives continuous research attention due to its usage in a variety of applications. In this paper, we propose a new Multi-Glimpse LSTM (MG-LSTM) network, in which multi-scale contextual information is sequentially integrated to promote the human detection performance. Furthermore, we propose a feature fusion strategy based on our MG-LSTM network to better incorporate the RGB and depth information. To the best of our knowledge, this is the first attempt to utilize LSTM structure for RGB-D based human detection. Our method achieves superior performance on two publicly available datasets.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着Kinect和Intel Realsense等深度相机的发展,基于RGB-D的人体检测因其在各种应用中的应用而不断受到研究的关注。在本文中,我们提出了一种新的多尺度LSTM (MG-LSTM)网络,该网络将多尺度上下文信息顺序集成以提高人体检测性能。此外,我们提出了一种基于MG-LSTM网络的特征融合策略,以更好地融合RGB和深度信息。据我们所知,这是第一次尝试利用LSTM结构进行基于RGB-D的人体检测。我们的方法在两个公开可用的数据集上实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-glimpse LSTM with color-depth feature fusion for human detection
With the development of depth cameras such as Kinect and Intel Realsense, RGB-D based human detection receives continuous research attention due to its usage in a variety of applications. In this paper, we propose a new Multi-Glimpse LSTM (MG-LSTM) network, in which multi-scale contextual information is sequentially integrated to promote the human detection performance. Furthermore, we propose a feature fusion strategy based on our MG-LSTM network to better incorporate the RGB and depth information. To the best of our knowledge, this is the first attempt to utilize LSTM structure for RGB-D based human detection. Our method achieves superior performance on two publicly available datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信