WSN辅助物联网的能效和概率极端负载均衡

S. Rani, K. Sankar
{"title":"WSN辅助物联网的能效和概率极端负载均衡","authors":"S. Rani, K. Sankar","doi":"10.1109/ICICICT54557.2022.9917772","DOIUrl":null,"url":null,"abstract":"In the current era, both Internet of things (IoT) and Wireless Sensor Networks (WSNs) are said to be the paramount operational coercion for technology advancements. However, when load conditions dynamically fluctuate, an imbalance load between sensors. In this paper, we propose an energy-efficient data aggregation and load balancing for reliable WSN assisted IoT communication called, Otsuka Ochiai Energy-efficient and Probabilistic Extreme Load Balancing (OOE-PELB). Otsuka-Ochiai Energy-efficient Data Aggregation is applied for performing optimal clustering and selecting the energy-efficient cluster head to reduce data aggregation time. Next, Probabilistic Extreme Learning Machine Load Balancing model is applied for precise and reliable WSN assisted IoT communications. The performance of the proposed method is evaluated by extensive simulations. The simulation results reveal that it outperforms the existing state-of-the-art methods in terms of energy efficiency, data aggregation time and network lifetime.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Otsuka Ochiai Energy Efficient and Probabilistic Extreme Load Balancing for WSN Assisted IoT\",\"authors\":\"S. Rani, K. Sankar\",\"doi\":\"10.1109/ICICICT54557.2022.9917772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current era, both Internet of things (IoT) and Wireless Sensor Networks (WSNs) are said to be the paramount operational coercion for technology advancements. However, when load conditions dynamically fluctuate, an imbalance load between sensors. In this paper, we propose an energy-efficient data aggregation and load balancing for reliable WSN assisted IoT communication called, Otsuka Ochiai Energy-efficient and Probabilistic Extreme Load Balancing (OOE-PELB). Otsuka-Ochiai Energy-efficient Data Aggregation is applied for performing optimal clustering and selecting the energy-efficient cluster head to reduce data aggregation time. Next, Probabilistic Extreme Learning Machine Load Balancing model is applied for precise and reliable WSN assisted IoT communications. The performance of the proposed method is evaluated by extensive simulations. The simulation results reveal that it outperforms the existing state-of-the-art methods in terms of energy efficiency, data aggregation time and network lifetime.\",\"PeriodicalId\":246214,\"journal\":{\"name\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICICT54557.2022.9917772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今时代,物联网(IoT)和无线传感器网络(wsn)都被认为是技术进步的最重要的操作强制。然而,当负载条件动态波动时,传感器之间的负载不平衡。在本文中,我们提出了一种用于可靠的WSN辅助物联网通信的节能数据聚合和负载均衡方法,称为Otsuka Ochiai节能和概率极端负载均衡(oe - pelb)。采用Otsuka-Ochiai节能数据聚合算法进行最优聚类,选择节能簇头,减少数据聚合时间。其次,将概率极限学习机负载平衡模型应用于WSN辅助物联网通信的精确可靠。通过大量的仿真验证了该方法的性能。仿真结果表明,该方法在能源效率、数据聚合时间和网络寿命方面都优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Otsuka Ochiai Energy Efficient and Probabilistic Extreme Load Balancing for WSN Assisted IoT
In the current era, both Internet of things (IoT) and Wireless Sensor Networks (WSNs) are said to be the paramount operational coercion for technology advancements. However, when load conditions dynamically fluctuate, an imbalance load between sensors. In this paper, we propose an energy-efficient data aggregation and load balancing for reliable WSN assisted IoT communication called, Otsuka Ochiai Energy-efficient and Probabilistic Extreme Load Balancing (OOE-PELB). Otsuka-Ochiai Energy-efficient Data Aggregation is applied for performing optimal clustering and selecting the energy-efficient cluster head to reduce data aggregation time. Next, Probabilistic Extreme Learning Machine Load Balancing model is applied for precise and reliable WSN assisted IoT communications. The performance of the proposed method is evaluated by extensive simulations. The simulation results reveal that it outperforms the existing state-of-the-art methods in terms of energy efficiency, data aggregation time and network lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信