多通道心电滤波:源一致性滤波、特征滤波和传统方法

L. Bachi, M. Varanini, Magda Costi, D. Lombardi, F. Rangoni, L. Billeci
{"title":"多通道心电滤波:源一致性滤波、特征滤波和传统方法","authors":"L. Bachi, M. Varanini, Magda Costi, D. Lombardi, F. Rangoni, L. Billeci","doi":"10.22489/CinC.2022.168","DOIUrl":null,"url":null,"abstract":"Noise reduction is a fundamental aspect of stress electrocardiogram <tex>$(ECG)$</tex> recording. In this setting, muscular noise represents the main antagonist to signal quality. A possible solution to muscle noise in stress <tex>$ECG$</tex> is to exploit the information redundancy in 12 - lead recordings to reduce noise while preserving the <tex>$ECG$</tex> signal. Source Consistency Filtering <tex>$(SCF)$</tex> is a spatial redundancy filter that follows this principle. In this paper, we compare the muscle noise rejection performance of conventional <tex>$25Hz$</tex> and <tex>$40Hz$</tex> low-pass filters (LPFs), the SC <tex>$F$</tex> ‘ and a method based on singular value decomposition <tex>$(SVD)$</tex> which exploits both the spatial and temporal correlation in the <tex>$ECG$</tex> signal. Our results indicate that the <tex>$SCF$</tex> can afford a <tex>$QRS$</tex> complex distortion lower than that of a 40 <tex>$Hz$</tex> lowpass filter while still maintaining a high noise rejection. The <tex>$QRS$</tex> detection accuracy on the filtered <tex>$ECG$</tex> was comparable for all methods except for the <tex>$SVD$</tex> filter, which allowed a superior detection performance score in all the records.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multichannel ECG Filtering: Source Consistency Filtering, Eigenfiltering and Traditional Methods\",\"authors\":\"L. Bachi, M. Varanini, Magda Costi, D. Lombardi, F. Rangoni, L. Billeci\",\"doi\":\"10.22489/CinC.2022.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise reduction is a fundamental aspect of stress electrocardiogram <tex>$(ECG)$</tex> recording. In this setting, muscular noise represents the main antagonist to signal quality. A possible solution to muscle noise in stress <tex>$ECG$</tex> is to exploit the information redundancy in 12 - lead recordings to reduce noise while preserving the <tex>$ECG$</tex> signal. Source Consistency Filtering <tex>$(SCF)$</tex> is a spatial redundancy filter that follows this principle. In this paper, we compare the muscle noise rejection performance of conventional <tex>$25Hz$</tex> and <tex>$40Hz$</tex> low-pass filters (LPFs), the SC <tex>$F$</tex> ‘ and a method based on singular value decomposition <tex>$(SVD)$</tex> which exploits both the spatial and temporal correlation in the <tex>$ECG$</tex> signal. Our results indicate that the <tex>$SCF$</tex> can afford a <tex>$QRS$</tex> complex distortion lower than that of a 40 <tex>$Hz$</tex> lowpass filter while still maintaining a high noise rejection. The <tex>$QRS$</tex> detection accuracy on the filtered <tex>$ECG$</tex> was comparable for all methods except for the <tex>$SVD$</tex> filter, which allowed a superior detection performance score in all the records.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降噪是应激心电图记录的一个基本方面。在这种情况下,肌肉噪声代表信号质量的主要拮抗剂。一种可能的解决方案是利用12导联记录中的信息冗余来减少噪声,同时保留ECG信号。源一致性过滤$(Source Consistency Filtering, SCF)$是一种遵循此原则的空间冗余过滤器。在本文中,我们比较了传统的$25Hz$和$40Hz$低通滤波器(lpf), SC $F$和基于奇异值分解(SVD)的方法(该方法利用了$ECG$信号的空间和时间相关性)的肌肉噪声抑制性能。我们的结果表明,SCF可以承受比40 Hz低通滤波器更低的QRS复杂失真,同时仍然保持高噪声抑制。除SVD过滤器外,过滤后的ECG的QRS检测精度与所有方法相当,SVD过滤器允许在所有记录中获得更高的检测性能分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel ECG Filtering: Source Consistency Filtering, Eigenfiltering and Traditional Methods
Noise reduction is a fundamental aspect of stress electrocardiogram $(ECG)$ recording. In this setting, muscular noise represents the main antagonist to signal quality. A possible solution to muscle noise in stress $ECG$ is to exploit the information redundancy in 12 - lead recordings to reduce noise while preserving the $ECG$ signal. Source Consistency Filtering $(SCF)$ is a spatial redundancy filter that follows this principle. In this paper, we compare the muscle noise rejection performance of conventional $25Hz$ and $40Hz$ low-pass filters (LPFs), the SC $F$ ‘ and a method based on singular value decomposition $(SVD)$ which exploits both the spatial and temporal correlation in the $ECG$ signal. Our results indicate that the $SCF$ can afford a $QRS$ complex distortion lower than that of a 40 $Hz$ lowpass filter while still maintaining a high noise rejection. The $QRS$ detection accuracy on the filtered $ECG$ was comparable for all methods except for the $SVD$ filter, which allowed a superior detection performance score in all the records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信