动态行为预测作为一维元胞自动机协同进化的驱动力

G.M.B. Oliveira, Oscar K. N. Asakura, P. D. Oliveira
{"title":"动态行为预测作为一维元胞自动机协同进化的驱动力","authors":"G.M.B. Oliveira, Oscar K. N. Asakura, P. D. Oliveira","doi":"10.1109/SBRN.2002.1181442","DOIUrl":null,"url":null,"abstract":"Various evolutionary methods have been used to look for cellular automata (CA) with a predefined computational behaviour. The most widely studied CA task is the density classification task (DCT) and the best rule currently known for it was obtained by a coevolutionary genetic algorithm (CGA). Here, we analyse the influence of incorporating a parameter-based heuristic into the coevolutionary search. The results obtained show that the parameters can effectively help a CGA in searching for DCT rules, and suggest that the choice of the amount of bias in the search, allowed for the heuristic, is more sensitive than in previous uses we made of it within standard evolutionary algorithms.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic behaviour forecast as a driving force in the coevolution of one-dimensional cellular automata\",\"authors\":\"G.M.B. Oliveira, Oscar K. N. Asakura, P. D. Oliveira\",\"doi\":\"10.1109/SBRN.2002.1181442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various evolutionary methods have been used to look for cellular automata (CA) with a predefined computational behaviour. The most widely studied CA task is the density classification task (DCT) and the best rule currently known for it was obtained by a coevolutionary genetic algorithm (CGA). Here, we analyse the influence of incorporating a parameter-based heuristic into the coevolutionary search. The results obtained show that the parameters can effectively help a CGA in searching for DCT rules, and suggest that the choice of the amount of bias in the search, allowed for the heuristic, is more sensitive than in previous uses we made of it within standard evolutionary algorithms.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

各种进化方法被用来寻找具有预定义计算行为的元胞自动机(CA)。研究最广泛的CA任务是密度分类任务(DCT),目前已知的最佳规则是由协同进化遗传算法(CGA)获得的。在这里,我们分析了将基于参数的启发式方法纳入共同进化搜索的影响。结果表明,这些参数可以有效地帮助CGA搜索DCT规则,并且表明在启发式允许的情况下,搜索中偏差量的选择比之前在标准进化算法中使用的更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic behaviour forecast as a driving force in the coevolution of one-dimensional cellular automata
Various evolutionary methods have been used to look for cellular automata (CA) with a predefined computational behaviour. The most widely studied CA task is the density classification task (DCT) and the best rule currently known for it was obtained by a coevolutionary genetic algorithm (CGA). Here, we analyse the influence of incorporating a parameter-based heuristic into the coevolutionary search. The results obtained show that the parameters can effectively help a CGA in searching for DCT rules, and suggest that the choice of the amount of bias in the search, allowed for the heuristic, is more sensitive than in previous uses we made of it within standard evolutionary algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信