一类随机微分方程在平均和扩散近似下的渐近保持格式

Charles-Edouard Br'ehier, Shmuel Rakotonirina-Ricquebourg
{"title":"一类随机微分方程在平均和扩散近似下的渐近保持格式","authors":"Charles-Edouard Br'ehier, Shmuel Rakotonirina-Ricquebourg","doi":"10.1137/20m1379836","DOIUrl":null,"url":null,"abstract":"We introduce and study a notion of Asymptotic Preserving schemes, related to convergence in distribution, for a class of slow-fast Stochastic Differential Equations. In some examples , crude schemes fail to capture the correct limiting equation resulting from averaging and diffusion approximation procedures. We propose examples of Asymptotic Preserving schemes: when the timescale separation vanishes, one obtains a limiting scheme, which is shown to be consistent in distribution with the limiting Stochastic Differential Equation. Numerical experiments illustrate the importance of the proposed Asymptotic Preserving schemes for several examples. In addition, in the averaging regime, error estimates are obtained and the proposed scheme is proved to be uniformly accurate.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On Asymptotic Preserving schemes for a class of Stochastic Differential Equations in averaging and diffusion approximation regimes\",\"authors\":\"Charles-Edouard Br'ehier, Shmuel Rakotonirina-Ricquebourg\",\"doi\":\"10.1137/20m1379836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a notion of Asymptotic Preserving schemes, related to convergence in distribution, for a class of slow-fast Stochastic Differential Equations. In some examples , crude schemes fail to capture the correct limiting equation resulting from averaging and diffusion approximation procedures. We propose examples of Asymptotic Preserving schemes: when the timescale separation vanishes, one obtains a limiting scheme, which is shown to be consistent in distribution with the limiting Stochastic Differential Equation. Numerical experiments illustrate the importance of the proposed Asymptotic Preserving schemes for several examples. In addition, in the averaging regime, error estimates are obtained and the proposed scheme is proved to be uniformly accurate.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1379836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1379836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对一类慢速随机微分方程,引入并研究了与分布收敛性有关的渐近保持格式的概念。在一些例子中,粗糙的格式不能捕获由平均和扩散近似过程产生的正确的极限方程。我们给出了渐近保持格式的例子:当时间标度分离消失时,我们得到了一个极限格式,它在分布上与极限随机微分方程一致。数值实验通过几个算例说明了所提出的渐近保持格式的重要性。此外,在平均状态下,得到了误差估计,证明了所提方案具有一致的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Asymptotic Preserving schemes for a class of Stochastic Differential Equations in averaging and diffusion approximation regimes
We introduce and study a notion of Asymptotic Preserving schemes, related to convergence in distribution, for a class of slow-fast Stochastic Differential Equations. In some examples , crude schemes fail to capture the correct limiting equation resulting from averaging and diffusion approximation procedures. We propose examples of Asymptotic Preserving schemes: when the timescale separation vanishes, one obtains a limiting scheme, which is shown to be consistent in distribution with the limiting Stochastic Differential Equation. Numerical experiments illustrate the importance of the proposed Asymptotic Preserving schemes for several examples. In addition, in the averaging regime, error estimates are obtained and the proposed scheme is proved to be uniformly accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信