基于流的无损数据压缩中减少符号搜索操作的银行选择方法

S. Yamagiwa, Ryuta Morita, Koichi Marumo
{"title":"基于流的无损数据压缩中减少符号搜索操作的银行选择方法","authors":"S. Yamagiwa, Ryuta Morita, Koichi Marumo","doi":"10.1109/DCC.2019.00123","DOIUrl":null,"url":null,"abstract":"Dictionary-based lossless data compression algorithms mainly replace a frequent data pattern in the inputted data to a compressed symbol, and to decompress vice versa. The mechanism potentially has an overhead problem regarding the number of symbol matchings in the table. This work focuses on a technique to reduce the number of searches in the dictionary using a bank separation technique. This poster presentation shows design and implementation of the technique applied to LCT-DLT.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"28 4 Suppl 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bank Select Method for Reducing Symbol Search Operations on Stream-Based Lossless Data Compression\",\"authors\":\"S. Yamagiwa, Ryuta Morita, Koichi Marumo\",\"doi\":\"10.1109/DCC.2019.00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dictionary-based lossless data compression algorithms mainly replace a frequent data pattern in the inputted data to a compressed symbol, and to decompress vice versa. The mechanism potentially has an overhead problem regarding the number of symbol matchings in the table. This work focuses on a technique to reduce the number of searches in the dictionary using a bank separation technique. This poster presentation shows design and implementation of the technique applied to LCT-DLT.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"28 4 Suppl 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于字典的无损数据压缩算法主要是将输入数据中的频繁数据模式替换为被压缩符号,反之亦然。这种机制在表中符号匹配的数量方面有潜在的开销问题。这项工作的重点是一种技术,以减少搜索次数在字典中使用银行分离技术。这张海报展示了应用于LCT-DLT技术的设计和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bank Select Method for Reducing Symbol Search Operations on Stream-Based Lossless Data Compression
Dictionary-based lossless data compression algorithms mainly replace a frequent data pattern in the inputted data to a compressed symbol, and to decompress vice versa. The mechanism potentially has an overhead problem regarding the number of symbol matchings in the table. This work focuses on a technique to reduce the number of searches in the dictionary using a bank separation technique. This poster presentation shows design and implementation of the technique applied to LCT-DLT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信