散射S-N曲线预测的改进模型

J. Klemenc, B. Podgornik
{"title":"散射S-N曲线预测的改进模型","authors":"J. Klemenc, B. Podgornik","doi":"10.5545/SV-JME.2018.5918","DOIUrl":null,"url":null,"abstract":"In this article an improved neural network model is presented that allows us to predict the scattered S-N curves. The model is capable of predicting the S-N curve in its high-cycle and very-high-cycle fatigue domains by considering also the increased scatter of the fatigue-life data below the knee point of the S-N curve. The scatter of the fatigue-life data for an arbitrary amplitude-stress level is modelled with a two-parametric Weibull%s probability density function, the parameters of which are varied as a function of the amplitude-stress level. The parameters of the S-N curve trend and its scatter distribution are not fixed, but depend on the parameters of the production process via a serial-hybrid neural network. The article presents the theoretical background and the application in the case of real experimental fatigue data for 51CrV4 spring steel manufactured with two different manufacturing technologies and two different heat treatments.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Improved Model for Predicting the Scattered S-N Curves\",\"authors\":\"J. Klemenc, B. Podgornik\",\"doi\":\"10.5545/SV-JME.2018.5918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article an improved neural network model is presented that allows us to predict the scattered S-N curves. The model is capable of predicting the S-N curve in its high-cycle and very-high-cycle fatigue domains by considering also the increased scatter of the fatigue-life data below the knee point of the S-N curve. The scatter of the fatigue-life data for an arbitrary amplitude-stress level is modelled with a two-parametric Weibull%s probability density function, the parameters of which are varied as a function of the amplitude-stress level. The parameters of the S-N curve trend and its scatter distribution are not fixed, but depend on the parameters of the production process via a serial-hybrid neural network. The article presents the theoretical background and the application in the case of real experimental fatigue data for 51CrV4 spring steel manufactured with two different manufacturing technologies and two different heat treatments.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/SV-JME.2018.5918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/SV-JME.2018.5918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种改进的神经网络模型,使我们能够预测散射S-N曲线。该模型还考虑了S-N曲线拐点以下疲劳寿命数据散点的增加,能够预测S-N曲线在高周和甚高周的疲劳域。采用双参数威布尔%s概率密度函数来模拟任意幅应力水平下疲劳寿命数据的离散性,该函数的参数随幅应力水平而变化。S-N曲线趋势及其散点分布的参数不是固定的,而是通过串行混合神经网络依赖于生产过程的参数。本文介绍了理论背景,并结合51CrV4弹簧钢两种不同制造工艺和两种不同热处理工艺的实际疲劳试验数据进行了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Model for Predicting the Scattered S-N Curves
In this article an improved neural network model is presented that allows us to predict the scattered S-N curves. The model is capable of predicting the S-N curve in its high-cycle and very-high-cycle fatigue domains by considering also the increased scatter of the fatigue-life data below the knee point of the S-N curve. The scatter of the fatigue-life data for an arbitrary amplitude-stress level is modelled with a two-parametric Weibull%s probability density function, the parameters of which are varied as a function of the amplitude-stress level. The parameters of the S-N curve trend and its scatter distribution are not fixed, but depend on the parameters of the production process via a serial-hybrid neural network. The article presents the theoretical background and the application in the case of real experimental fatigue data for 51CrV4 spring steel manufactured with two different manufacturing technologies and two different heat treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信