基于PS-ADMM方法的大规模Mimo系统QAM信号检测器设计

Quan Zhang, Xuyang Zhao, Jiangtao Wang, Yongchao Wang
{"title":"基于PS-ADMM方法的大规模Mimo系统QAM信号检测器设计","authors":"Quan Zhang, Xuyang Zhao, Jiangtao Wang, Yongchao Wang","doi":"10.1109/icassp43922.2022.9747281","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient quadrature amplitude modulation (QAM) signal detector for massive multiple-input multiple-output (MIMO) communication systems via the penalty-sharing alternating direction method of multipliers (PS-ADMM). The content of the paper is summarized as follows: first, we formulate QAM-MIMO detection as a maximum-likelihood optimization problem with bound relaxation constraints. Decomposing QAM signals into a sum of multiple binary variables and exploiting introduced binary variables as penalty functions, we transform the detection optimization model to a non-convex sharing problem; second, a customized ADMM algorithm is presented to solve the formulated non-convex optimization problem. In the implementation, all variables can be solved analytically and in parallel; third, it is proved that the proposed PS-ADMM algorithm converges under mild conditions. Simulation results demonstrate the effectiveness of the proposed approach.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing a QAM Signal Detector for Massive Mimo Systems via PS-ADMM Approach\",\"authors\":\"Quan Zhang, Xuyang Zhao, Jiangtao Wang, Yongchao Wang\",\"doi\":\"10.1109/icassp43922.2022.9747281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient quadrature amplitude modulation (QAM) signal detector for massive multiple-input multiple-output (MIMO) communication systems via the penalty-sharing alternating direction method of multipliers (PS-ADMM). The content of the paper is summarized as follows: first, we formulate QAM-MIMO detection as a maximum-likelihood optimization problem with bound relaxation constraints. Decomposing QAM signals into a sum of multiple binary variables and exploiting introduced binary variables as penalty functions, we transform the detection optimization model to a non-convex sharing problem; second, a customized ADMM algorithm is presented to solve the formulated non-convex optimization problem. In the implementation, all variables can be solved analytically and in parallel; third, it is proved that the proposed PS-ADMM algorithm converges under mild conditions. Simulation results demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种适用于大规模多输入多输出(MIMO)通信系统的高效正交调幅(QAM)信号检测器,该检测器采用乘法器的罚分交替方向法(PS-ADMM)。本文的内容总结如下:首先,我们将QAM-MIMO检测表述为一个有界松弛约束的最大似然优化问题。将QAM信号分解为多个二元变量的和,并利用引入的二元变量作为惩罚函数,将检测优化模型转化为非凸共享问题;其次,提出了一种自定义ADMM算法来解决公式化的非凸优化问题。在实现中,所有变量都可以解析求解和并行求解;第三,证明了PS-ADMM算法在温和条件下的收敛性。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a QAM Signal Detector for Massive Mimo Systems via PS-ADMM Approach
This paper presents an efficient quadrature amplitude modulation (QAM) signal detector for massive multiple-input multiple-output (MIMO) communication systems via the penalty-sharing alternating direction method of multipliers (PS-ADMM). The content of the paper is summarized as follows: first, we formulate QAM-MIMO detection as a maximum-likelihood optimization problem with bound relaxation constraints. Decomposing QAM signals into a sum of multiple binary variables and exploiting introduced binary variables as penalty functions, we transform the detection optimization model to a non-convex sharing problem; second, a customized ADMM algorithm is presented to solve the formulated non-convex optimization problem. In the implementation, all variables can be solved analytically and in parallel; third, it is proved that the proposed PS-ADMM algorithm converges under mild conditions. Simulation results demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信