基于个人历史的协同过滤推荐服务系统

Jong-Hun Kim, Kyung-Yong Chung, Joong-Kyung Ryu, K. Rim, Jung-Hyun Lee
{"title":"基于个人历史的协同过滤推荐服务系统","authors":"Jong-Hun Kim, Kyung-Yong Chung, Joong-Kyung Ryu, K. Rim, Jung-Hyun Lee","doi":"10.1109/ASEA.2008.56","DOIUrl":null,"url":null,"abstract":"Although the conventional ubiquitous home service provides services using the information of environments obtained by the analysis of sensors, it shows a lack of user information. If recommendation services are able to use the past item selection information related to the context information of users, individualized services would be achieved. Also, it is possible to solve a specialization tendency that makes not possible to avoid the taste of users themselves for recommended items when users use the item selection information of other users. This paper attempt to use Naive Bayesian for context model and propose recommendation service method based on personal history. And the recommendation service system (RSS) use a collaborative filtering (CF) to solve a specialization tendency on Open Service Gateway Initiative (OSGi).","PeriodicalId":223823,"journal":{"name":"2008 Advanced Software Engineering and Its Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Personal History Based Recommendation Service System with Collaborative Filtering\",\"authors\":\"Jong-Hun Kim, Kyung-Yong Chung, Joong-Kyung Ryu, K. Rim, Jung-Hyun Lee\",\"doi\":\"10.1109/ASEA.2008.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the conventional ubiquitous home service provides services using the information of environments obtained by the analysis of sensors, it shows a lack of user information. If recommendation services are able to use the past item selection information related to the context information of users, individualized services would be achieved. Also, it is possible to solve a specialization tendency that makes not possible to avoid the taste of users themselves for recommended items when users use the item selection information of other users. This paper attempt to use Naive Bayesian for context model and propose recommendation service method based on personal history. And the recommendation service system (RSS) use a collaborative filtering (CF) to solve a specialization tendency on Open Service Gateway Initiative (OSGi).\",\"PeriodicalId\":223823,\"journal\":{\"name\":\"2008 Advanced Software Engineering and Its Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Advanced Software Engineering and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASEA.2008.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Advanced Software Engineering and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASEA.2008.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的无所不在的家庭服务虽然利用传感器分析得到的环境信息来提供服务,但缺乏用户信息。如果推荐服务能够利用与用户上下文信息相关的过去商品选择信息,就可以实现个性化服务。也可以解决用户在使用其他用户的商品选择信息时无法避免用户自己对推荐商品的品味的专业化倾向。本文尝试将朴素贝叶斯用于上下文模型,提出了基于个人历史的推荐服务方法。推荐服务系统(RSS)采用协同过滤(CF)来解决开放服务网关倡议(OSGi)的专门化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personal History Based Recommendation Service System with Collaborative Filtering
Although the conventional ubiquitous home service provides services using the information of environments obtained by the analysis of sensors, it shows a lack of user information. If recommendation services are able to use the past item selection information related to the context information of users, individualized services would be achieved. Also, it is possible to solve a specialization tendency that makes not possible to avoid the taste of users themselves for recommended items when users use the item selection information of other users. This paper attempt to use Naive Bayesian for context model and propose recommendation service method based on personal history. And the recommendation service system (RSS) use a collaborative filtering (CF) to solve a specialization tendency on Open Service Gateway Initiative (OSGi).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信