匹配日志分析对源代码的系统映射研究

Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin
{"title":"匹配日志分析对源代码的系统映射研究","authors":"Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin","doi":"10.1145/3400286.3418262","DOIUrl":null,"url":null,"abstract":"Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On Matching Log Analysis to Source Code: A Systematic Mapping Study\",\"authors\":\"Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin\",\"doi\":\"10.1145/3400286.3418262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3400286.3418262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

日志记录是软件开发过程中至关重要的一部分。开发人员使用程序日志来监视程序执行并识别错误和异常。这些错误还可能导致未捕获的异常,并生成有助于识别错误点的堆栈跟踪。这两个源都包含可以与源代码中的点相匹配的信息,但是对于创建大量日志和具有大型代码库的大型系统来说,手动日志分析是具有挑战性的。在本文中,我们提供了一个系统的映射研究,以确定用于执行自动日志分析和堆栈跟踪分析的最先进的工具和方法,并将提取的信息匹配回程序的源代码。我们分析了16份解决这个问题的出版物,总结了他们的策略和目标,并从这些工作中确定了开放的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Matching Log Analysis to Source Code: A Systematic Mapping Study
Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信