Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin
{"title":"匹配日志分析对源代码的系统映射研究","authors":"Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin","doi":"10.1145/3400286.3418262","DOIUrl":null,"url":null,"abstract":"Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On Matching Log Analysis to Source Code: A Systematic Mapping Study\",\"authors\":\"Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, T. Cerný, Karel Frajták, Miroslav Bures, Pavel Tisnovsky, Dongwan Shin\",\"doi\":\"10.1145/3400286.3418262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3400286.3418262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Matching Log Analysis to Source Code: A Systematic Mapping Study
Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work.