补丁隐写分析:基于采样的对抗性隐写防御

Chuan Qin, Na Zhao, Weiming Zhang, Nenghai Yu
{"title":"补丁隐写分析:基于采样的对抗性隐写防御","authors":"Chuan Qin, Na Zhao, Weiming Zhang, Nenghai Yu","doi":"10.1109/icassp43922.2022.9747638","DOIUrl":null,"url":null,"abstract":"In recent years, the classification accuracy of CNN (convolutional neural network) steganalyzers has rapidly improved. However, as general CNN classifiers will misclassify adversarial samples, CNN steganalyzers can hardly detect adversarial steganography, which combines adversarial samples and steganography. Adversarial training and preprocessing are two effective methods to defend against adversarial samples. But literature shows adversarial training is ineffective for adversarial steganography. Steganographic modifications will also be destroyed by preprocessing, which aims to wipe out adversarial perturbations. In this paper, we propose a novel sampling based defense method for steganalysis. Specifically, by sampling image patches, CNN steganalyzers can bypass the sparse adversarial perturbations and extract effective features. Additionally, by calculating statistical vectors and regrouping deep features, the impact on the classification accuracy of common samples is effectively compressed. The experiments show that the proposed method can significantly improve the robustness against adversarial steganography without adversarial training.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Patch Steganalysis: A Sampling Based Defense Against Adversarial Steganography\",\"authors\":\"Chuan Qin, Na Zhao, Weiming Zhang, Nenghai Yu\",\"doi\":\"10.1109/icassp43922.2022.9747638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the classification accuracy of CNN (convolutional neural network) steganalyzers has rapidly improved. However, as general CNN classifiers will misclassify adversarial samples, CNN steganalyzers can hardly detect adversarial steganography, which combines adversarial samples and steganography. Adversarial training and preprocessing are two effective methods to defend against adversarial samples. But literature shows adversarial training is ineffective for adversarial steganography. Steganographic modifications will also be destroyed by preprocessing, which aims to wipe out adversarial perturbations. In this paper, we propose a novel sampling based defense method for steganalysis. Specifically, by sampling image patches, CNN steganalyzers can bypass the sparse adversarial perturbations and extract effective features. Additionally, by calculating statistical vectors and regrouping deep features, the impact on the classification accuracy of common samples is effectively compressed. The experiments show that the proposed method can significantly improve the robustness against adversarial steganography without adversarial training.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,CNN(卷积神经网络)隐写分析仪的分类精度得到了迅速提高。然而,由于一般的CNN分类器会对对抗样本进行错误分类,CNN隐写分析仪很难检测到对抗样本和隐写相结合的对抗隐写。对抗训练和预处理是对抗样本的两种有效方法。但文献表明,对抗性训练对对抗性隐写是无效的。隐写修改也将被预处理破坏,其目的是消除对抗性扰动。本文提出了一种新的基于采样的隐写防御方法。具体来说,CNN隐写分析仪通过对图像patch进行采样,可以绕过稀疏的对抗性扰动,提取有效特征。此外,通过统计向量的计算和深度特征的重新分组,有效地压缩了对常见样本分类精度的影响。实验表明,该方法可以显著提高对对抗隐写的鲁棒性,无需对抗训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patch Steganalysis: A Sampling Based Defense Against Adversarial Steganography
In recent years, the classification accuracy of CNN (convolutional neural network) steganalyzers has rapidly improved. However, as general CNN classifiers will misclassify adversarial samples, CNN steganalyzers can hardly detect adversarial steganography, which combines adversarial samples and steganography. Adversarial training and preprocessing are two effective methods to defend against adversarial samples. But literature shows adversarial training is ineffective for adversarial steganography. Steganographic modifications will also be destroyed by preprocessing, which aims to wipe out adversarial perturbations. In this paper, we propose a novel sampling based defense method for steganalysis. Specifically, by sampling image patches, CNN steganalyzers can bypass the sparse adversarial perturbations and extract effective features. Additionally, by calculating statistical vectors and regrouping deep features, the impact on the classification accuracy of common samples is effectively compressed. The experiments show that the proposed method can significantly improve the robustness against adversarial steganography without adversarial training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信