视听数据库中情绪表达与注释的表征性偏差

William Saakyan, Olya Hakobyan, Hanna Drimalla
{"title":"视听数据库中情绪表达与注释的表征性偏差","authors":"William Saakyan, Olya Hakobyan, Hanna Drimalla","doi":"10.4108/eai.20-11-2021.2314203","DOIUrl":null,"url":null,"abstract":"Emotion recognition models can be confounded by representation bias, where populations of certain gender, age or ethnoracial characteristics are not sufficiently represented in the training data. This may result in erroneous predictions with consequences of personal relevance in sensitive contexts. We systematically examined 130 emotion (audio, visual and audio-visual) datasets and found that age and ethnoracial background are the most affected dimensions, while gender is largely balanced in emotion datasets. The observed disparities between age and ethnoracial groups are compounded by scarce and inconsistent reports of demographic information. Finally, we observed a lack of information about the annotators of emotion datasets, another potential source of bias.","PeriodicalId":119759,"journal":{"name":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Representational bias in expression and annotation of emotions in audiovisual databases\",\"authors\":\"William Saakyan, Olya Hakobyan, Hanna Drimalla\",\"doi\":\"10.4108/eai.20-11-2021.2314203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition models can be confounded by representation bias, where populations of certain gender, age or ethnoracial characteristics are not sufficiently represented in the training data. This may result in erroneous predictions with consequences of personal relevance in sensitive contexts. We systematically examined 130 emotion (audio, visual and audio-visual) datasets and found that age and ethnoracial background are the most affected dimensions, while gender is largely balanced in emotion datasets. The observed disparities between age and ethnoracial groups are compounded by scarce and inconsistent reports of demographic information. Finally, we observed a lack of information about the annotators of emotion datasets, another potential source of bias.\",\"PeriodicalId\":119759,\"journal\":{\"name\":\"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.20-11-2021.2314203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.20-11-2021.2314203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

当特定性别、年龄或种族特征的人群在训练数据中没有得到充分的代表时,情感识别模型可能会受到表征偏差的影响。这可能会导致错误的预测,并在敏感环境中产生个人相关性的后果。我们系统地检查了130个情感(音频、视觉和视听)数据集,发现年龄和种族背景是受影响最大的维度,而性别在情感数据集中基本平衡。所观察到的年龄和种族群体之间的差异,由于人口资料报告稀少和不一致而更加严重。最后,我们观察到缺乏关于情感数据集注释者的信息,这是另一个潜在的偏见来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representational bias in expression and annotation of emotions in audiovisual databases
Emotion recognition models can be confounded by representation bias, where populations of certain gender, age or ethnoracial characteristics are not sufficiently represented in the training data. This may result in erroneous predictions with consequences of personal relevance in sensitive contexts. We systematically examined 130 emotion (audio, visual and audio-visual) datasets and found that age and ethnoracial background are the most affected dimensions, while gender is largely balanced in emotion datasets. The observed disparities between age and ethnoracial groups are compounded by scarce and inconsistent reports of demographic information. Finally, we observed a lack of information about the annotators of emotion datasets, another potential source of bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信