使用四元数高斯映射的曲线和曲面的约束优化框架

A. Hanson
{"title":"使用四元数高斯映射的曲线和曲面的约束优化框架","authors":"A. Hanson","doi":"10.5555/288216.288324","DOIUrl":null,"url":null,"abstract":"We propose a general paradigm for computing optimal coordinate frame fields that may be exploited to visualize curves and surfaces. Parallel transport framings, which work well for open curves, generally fail to have desirable properties for cyclic curves and for surfaces. We suggest that minimal quaternion measure provides an appropriate heuristic generalization of parallel transport. Our approach differs from minimal tangential acceleration approaches due to the addition of \"sliding ring\" constraints that fix one frame axis, but allow an axial rotational freedom whose value is varied in the optimization process. Our fundamental tool is the quaternion Gauss map, a generalization to quaternion space of the tangent map for curves and of the Gauss map for surfaces. The quaternion Gauss map takes 3D coordinate frame fields for curves and surfaces into corresponding curves and surfaces constrained to the space of possible orientations in quaternion space. Standard optimization tools provide application specific means of choosing optimal, e.g., length- or area-minimizing, quaternion frame fields in this constrained space.","PeriodicalId":399113,"journal":{"name":"Proceedings Visualization '98 (Cat. No.98CB36276)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Constrained optimal framings of curves and surfaces using quaternion Gauss maps\",\"authors\":\"A. Hanson\",\"doi\":\"10.5555/288216.288324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general paradigm for computing optimal coordinate frame fields that may be exploited to visualize curves and surfaces. Parallel transport framings, which work well for open curves, generally fail to have desirable properties for cyclic curves and for surfaces. We suggest that minimal quaternion measure provides an appropriate heuristic generalization of parallel transport. Our approach differs from minimal tangential acceleration approaches due to the addition of \\\"sliding ring\\\" constraints that fix one frame axis, but allow an axial rotational freedom whose value is varied in the optimization process. Our fundamental tool is the quaternion Gauss map, a generalization to quaternion space of the tangent map for curves and of the Gauss map for surfaces. The quaternion Gauss map takes 3D coordinate frame fields for curves and surfaces into corresponding curves and surfaces constrained to the space of possible orientations in quaternion space. Standard optimization tools provide application specific means of choosing optimal, e.g., length- or area-minimizing, quaternion frame fields in this constrained space.\",\"PeriodicalId\":399113,\"journal\":{\"name\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '98 (Cat. No.98CB36276)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/288216.288324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '98 (Cat. No.98CB36276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/288216.288324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们提出了一个计算最优坐标框架场的通用范例,可以用来可视化曲线和曲面。对于开曲线来说,平行输运框架工作得很好,但对于循环曲线和曲面来说,它通常没有理想的性质。我们认为,最小四元数测度提供了一个适当的启发式推广平行运输。我们的方法不同于最小切向加速度方法,因为增加了固定一个框架轴的“滑环”约束,但允许轴向旋转自由度,其值在优化过程中变化。我们的基本工具是四元数高斯映射,这是曲线的切线映射和曲面的高斯映射的四元数空间的推广。四元数高斯映射将曲线和曲面的三维坐标帧场转化为四元数空间中受可能方向空间约束的相应曲线和曲面。标准优化工具提供了特定于应用程序的方法来选择最优的,例如,长度或面积最小化,四元数帧字段在这个受限的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained optimal framings of curves and surfaces using quaternion Gauss maps
We propose a general paradigm for computing optimal coordinate frame fields that may be exploited to visualize curves and surfaces. Parallel transport framings, which work well for open curves, generally fail to have desirable properties for cyclic curves and for surfaces. We suggest that minimal quaternion measure provides an appropriate heuristic generalization of parallel transport. Our approach differs from minimal tangential acceleration approaches due to the addition of "sliding ring" constraints that fix one frame axis, but allow an axial rotational freedom whose value is varied in the optimization process. Our fundamental tool is the quaternion Gauss map, a generalization to quaternion space of the tangent map for curves and of the Gauss map for surfaces. The quaternion Gauss map takes 3D coordinate frame fields for curves and surfaces into corresponding curves and surfaces constrained to the space of possible orientations in quaternion space. Standard optimization tools provide application specific means of choosing optimal, e.g., length- or area-minimizing, quaternion frame fields in this constrained space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信