Wenqiang Chen, Ziqi Wang, Pengrui Quan, Zhencan Peng, Shupei Lin, M. Srivastava, J. Stankovic
{"title":"使基于振动的与身体的交互更加稳健","authors":"Wenqiang Chen, Ziqi Wang, Pengrui Quan, Zhencan Peng, Shupei Lin, M. Srivastava, J. Stankovic","doi":"10.1109/iccps54341.2022.00041","DOIUrl":null,"url":null,"abstract":"Wearable devices like smartwatches and smart wristbands have gained substantial popularity in recent years. However, due to the limited size of the touch screens, smartwatches typically have a poor interactive experience for users. Recently, new technology has converted the human body into a virtual interface using finger activity induced vibrations. However, these solutions fail to meet expectations during real-world deployments, e.g., system performance significantly degrades due to human-based variations, such as hand shapes, tapping forces, and device positions. To mitigate these human-based variations, we collected a dataset of 114 users, built a deep-learning model, and designed a novel Siamese domain adversarial training algorithm. In this way, we implement a robust system which works at accuracy (97%) across different hand shapes, finger activity strengths, and smartwatch positions on the wrist. We have posted a demo video on YouTube (https://youtu.be/N5-ggvy2qfI).","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Making Vibration-based On-body Interaction Robust\",\"authors\":\"Wenqiang Chen, Ziqi Wang, Pengrui Quan, Zhencan Peng, Shupei Lin, M. Srivastava, J. Stankovic\",\"doi\":\"10.1109/iccps54341.2022.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable devices like smartwatches and smart wristbands have gained substantial popularity in recent years. However, due to the limited size of the touch screens, smartwatches typically have a poor interactive experience for users. Recently, new technology has converted the human body into a virtual interface using finger activity induced vibrations. However, these solutions fail to meet expectations during real-world deployments, e.g., system performance significantly degrades due to human-based variations, such as hand shapes, tapping forces, and device positions. To mitigate these human-based variations, we collected a dataset of 114 users, built a deep-learning model, and designed a novel Siamese domain adversarial training algorithm. In this way, we implement a robust system which works at accuracy (97%) across different hand shapes, finger activity strengths, and smartwatch positions on the wrist. We have posted a demo video on YouTube (https://youtu.be/N5-ggvy2qfI).\",\"PeriodicalId\":340078,\"journal\":{\"name\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccps54341.2022.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable devices like smartwatches and smart wristbands have gained substantial popularity in recent years. However, due to the limited size of the touch screens, smartwatches typically have a poor interactive experience for users. Recently, new technology has converted the human body into a virtual interface using finger activity induced vibrations. However, these solutions fail to meet expectations during real-world deployments, e.g., system performance significantly degrades due to human-based variations, such as hand shapes, tapping forces, and device positions. To mitigate these human-based variations, we collected a dataset of 114 users, built a deep-learning model, and designed a novel Siamese domain adversarial training algorithm. In this way, we implement a robust system which works at accuracy (97%) across different hand shapes, finger activity strengths, and smartwatch positions on the wrist. We have posted a demo video on YouTube (https://youtu.be/N5-ggvy2qfI).