{"title":"项链超立方体上的并行数值插值","authors":"S. Meraji, H. Sarbazi-Azad","doi":"10.1109/AMS.2007.78","DOIUrl":null,"url":null,"abstract":"The necklace hypercube has been recently proposed as an attractive topology for multicomputers and was shown to have many desirable properties such as well-scalability and suitability for VLSI implementation. This paper introduces a parallel algorithm for computing an N-point Lagrange interpolation on a necklace hypercube multiprocessor. This algorithm consists of 3 phases: initialization, main and final. There is no computation in the initialization phase. The main phase consists of lceilE/2rceil steps (with E being the number of edges of the network), each consisting of 4 multiplications and 4 subtractions, and an additional step including 1 division and 1 multiplication. Communication in the main phase is based on an all-to-all broadcast algorithm using some Eulerian rings embedded in the host necklace hypercube. The final phase is carried out in three sub-phases. There are lceilk/2rceil steps in the first sub-phase where k is the size of necklace. Each of sub-phases two and three contains n steps. Our study reveals that when implementation cost in taken into account, there is no speedup difference between low-dimensional and high-dimensional necklace networks","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Numerical Interpolation on Necklace Hypercubes\",\"authors\":\"S. Meraji, H. Sarbazi-Azad\",\"doi\":\"10.1109/AMS.2007.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necklace hypercube has been recently proposed as an attractive topology for multicomputers and was shown to have many desirable properties such as well-scalability and suitability for VLSI implementation. This paper introduces a parallel algorithm for computing an N-point Lagrange interpolation on a necklace hypercube multiprocessor. This algorithm consists of 3 phases: initialization, main and final. There is no computation in the initialization phase. The main phase consists of lceilE/2rceil steps (with E being the number of edges of the network), each consisting of 4 multiplications and 4 subtractions, and an additional step including 1 division and 1 multiplication. Communication in the main phase is based on an all-to-all broadcast algorithm using some Eulerian rings embedded in the host necklace hypercube. The final phase is carried out in three sub-phases. There are lceilk/2rceil steps in the first sub-phase where k is the size of necklace. Each of sub-phases two and three contains n steps. Our study reveals that when implementation cost in taken into account, there is no speedup difference between low-dimensional and high-dimensional necklace networks\",\"PeriodicalId\":198751,\"journal\":{\"name\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2007.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Numerical Interpolation on Necklace Hypercubes
The necklace hypercube has been recently proposed as an attractive topology for multicomputers and was shown to have many desirable properties such as well-scalability and suitability for VLSI implementation. This paper introduces a parallel algorithm for computing an N-point Lagrange interpolation on a necklace hypercube multiprocessor. This algorithm consists of 3 phases: initialization, main and final. There is no computation in the initialization phase. The main phase consists of lceilE/2rceil steps (with E being the number of edges of the network), each consisting of 4 multiplications and 4 subtractions, and an additional step including 1 division and 1 multiplication. Communication in the main phase is based on an all-to-all broadcast algorithm using some Eulerian rings embedded in the host necklace hypercube. The final phase is carried out in three sub-phases. There are lceilk/2rceil steps in the first sub-phase where k is the size of necklace. Each of sub-phases two and three contains n steps. Our study reveals that when implementation cost in taken into account, there is no speedup difference between low-dimensional and high-dimensional necklace networks