{"title":"具有多个序列、任务和用户级别的在线游戏的顺序推荐","authors":"Si Chen, Yuqiu Qian, Hui Li, Chen Lin","doi":"10.1145/3469830.3470906","DOIUrl":null,"url":null,"abstract":"Online gaming is growing faster than ever before, with increasing challenges of providing better user experience. Recommender systems (RS) for online games face unique challenges since they must fulfill players’ distinct desires, at different user levels, based on their action sequences of various action types. Although many sequential RS already exist, they are mainly single-sequence, single-task, and single-user-level. In this paper, we introduce a new sequential recommendation model for multiple sequences, multiple tasks, and multiple user levels (abbreviated as M3Rec) in Tencent Games platform, which can fully utilize complex data in online games. We leverage Graph Neural Network and multi-task learning to design M3Rec in order to model the complex information in the heterogeneous sequential recommendation scenario of Tencent Games. We verify the effectiveness of M3Rec on three online games of Tencent Games platform, in both offline and online evaluations. The results show that M3Rec successfully addresses the challenges of recommendation in online games, and it generates superior recommendations compared with state-of-the-art sequential recommendation approaches.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Recommendation in Online Games with Multiple Sequences, Tasks and User Levels\",\"authors\":\"Si Chen, Yuqiu Qian, Hui Li, Chen Lin\",\"doi\":\"10.1145/3469830.3470906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online gaming is growing faster than ever before, with increasing challenges of providing better user experience. Recommender systems (RS) for online games face unique challenges since they must fulfill players’ distinct desires, at different user levels, based on their action sequences of various action types. Although many sequential RS already exist, they are mainly single-sequence, single-task, and single-user-level. In this paper, we introduce a new sequential recommendation model for multiple sequences, multiple tasks, and multiple user levels (abbreviated as M3Rec) in Tencent Games platform, which can fully utilize complex data in online games. We leverage Graph Neural Network and multi-task learning to design M3Rec in order to model the complex information in the heterogeneous sequential recommendation scenario of Tencent Games. We verify the effectiveness of M3Rec on three online games of Tencent Games platform, in both offline and online evaluations. The results show that M3Rec successfully addresses the challenges of recommendation in online games, and it generates superior recommendations compared with state-of-the-art sequential recommendation approaches.\",\"PeriodicalId\":206910,\"journal\":{\"name\":\"17th International Symposium on Spatial and Temporal Databases\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Symposium on Spatial and Temporal Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469830.3470906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequential Recommendation in Online Games with Multiple Sequences, Tasks and User Levels
Online gaming is growing faster than ever before, with increasing challenges of providing better user experience. Recommender systems (RS) for online games face unique challenges since they must fulfill players’ distinct desires, at different user levels, based on their action sequences of various action types. Although many sequential RS already exist, they are mainly single-sequence, single-task, and single-user-level. In this paper, we introduce a new sequential recommendation model for multiple sequences, multiple tasks, and multiple user levels (abbreviated as M3Rec) in Tencent Games platform, which can fully utilize complex data in online games. We leverage Graph Neural Network and multi-task learning to design M3Rec in order to model the complex information in the heterogeneous sequential recommendation scenario of Tencent Games. We verify the effectiveness of M3Rec on three online games of Tencent Games platform, in both offline and online evaluations. The results show that M3Rec successfully addresses the challenges of recommendation in online games, and it generates superior recommendations compared with state-of-the-art sequential recommendation approaches.