Othmane Cherqi, Hicham Hammouchi, M. Ghogho, H. Benbrahim
{"title":"利用开放式威胁交换(OTX)了解网络威胁的时空趋势:Covid-19案例研究","authors":"Othmane Cherqi, Hicham Hammouchi, M. Ghogho, H. Benbrahim","doi":"10.1109/ISI53945.2021.9624677","DOIUrl":null,"url":null,"abstract":"Understanding the properties exhibited by Spatial-temporal evolution of cyber attacks improve cyber threat intelligence. In addition, better understanding on threats patterns is a key feature for cyber threats prevention, detection, and management and for enhancing defenses. In this work, we study different aspects of emerging threats in the wild shared by 160,000 global participants form all industries. First, we perform an exploratory data analysis of the collected cyber threats. We investigate the most targeted countries, most common malwares and the distribution of attacks frequency by localisation. Second, we extract attacks’ spreading patterns at country level. We model these behaviors using transition graphs decorated with probabilities of switching from a country to another. Finally, we analyse the extent to which cyber threats have been affected by the COVID-19 outbreak and sanitary measures imposed by governments to prevent the virus from spreading.","PeriodicalId":347770,"journal":{"name":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Leveraging Open Threat Exchange (OTX) to Understand Spatio-Temporal Trends of Cyber Threats: Covid-19 Case Study\",\"authors\":\"Othmane Cherqi, Hicham Hammouchi, M. Ghogho, H. Benbrahim\",\"doi\":\"10.1109/ISI53945.2021.9624677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the properties exhibited by Spatial-temporal evolution of cyber attacks improve cyber threat intelligence. In addition, better understanding on threats patterns is a key feature for cyber threats prevention, detection, and management and for enhancing defenses. In this work, we study different aspects of emerging threats in the wild shared by 160,000 global participants form all industries. First, we perform an exploratory data analysis of the collected cyber threats. We investigate the most targeted countries, most common malwares and the distribution of attacks frequency by localisation. Second, we extract attacks’ spreading patterns at country level. We model these behaviors using transition graphs decorated with probabilities of switching from a country to another. Finally, we analyse the extent to which cyber threats have been affected by the COVID-19 outbreak and sanitary measures imposed by governments to prevent the virus from spreading.\",\"PeriodicalId\":347770,\"journal\":{\"name\":\"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI53945.2021.9624677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI53945.2021.9624677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging Open Threat Exchange (OTX) to Understand Spatio-Temporal Trends of Cyber Threats: Covid-19 Case Study
Understanding the properties exhibited by Spatial-temporal evolution of cyber attacks improve cyber threat intelligence. In addition, better understanding on threats patterns is a key feature for cyber threats prevention, detection, and management and for enhancing defenses. In this work, we study different aspects of emerging threats in the wild shared by 160,000 global participants form all industries. First, we perform an exploratory data analysis of the collected cyber threats. We investigate the most targeted countries, most common malwares and the distribution of attacks frequency by localisation. Second, we extract attacks’ spreading patterns at country level. We model these behaviors using transition graphs decorated with probabilities of switching from a country to another. Finally, we analyse the extent to which cyber threats have been affected by the COVID-19 outbreak and sanitary measures imposed by governments to prevent the virus from spreading.