低合金钢在空气中拉压缩载荷下的疲劳裂纹扩展

Kisaburo Azuma, Y. Yamazaki
{"title":"低合金钢在空气中拉压缩载荷下的疲劳裂纹扩展","authors":"Kisaburo Azuma, Y. Yamazaki","doi":"10.1115/PVP2018-84467","DOIUrl":null,"url":null,"abstract":"Low alloy steels are extensively used in pressure boundary components of nuclear power plants. The structural integrity of the components made of low alloy steels can be evaluated by the procedure of flaw evaluation provided by Section XI of the ASME Boiler and Pressure Vessel Code. According to the Code, the range of stress intensity factor ΔK can be used to determine the fatigue crack growth rates of the material. However, it has been reported that crack closure behavior also strongly influence the fatigue crack growth rate under strong compressive load cycles.\n This paper discusses the relation between ΔK and the fatigue crack growth rate for cracks in low alloy steels exposed to air. Compressive-tensile cyclic loadings were applied to center-notched plates to obtain the fatigue crack growth curves. The test data demonstrated that effective SIF range ΔKeff more accurately described the crack growth property due to plasticity induced crack closure. Comparing the test results with the reference crack growth curves in the ASME Code Section XI, it may seem that the crack growth prediction based on the Code underestimates the crack growth rates for compressive-tensile cyclic loadings under high stress level.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Crack Growth in Low Alloy Steels Under Tension-Compression Loading in Air\",\"authors\":\"Kisaburo Azuma, Y. Yamazaki\",\"doi\":\"10.1115/PVP2018-84467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low alloy steels are extensively used in pressure boundary components of nuclear power plants. The structural integrity of the components made of low alloy steels can be evaluated by the procedure of flaw evaluation provided by Section XI of the ASME Boiler and Pressure Vessel Code. According to the Code, the range of stress intensity factor ΔK can be used to determine the fatigue crack growth rates of the material. However, it has been reported that crack closure behavior also strongly influence the fatigue crack growth rate under strong compressive load cycles.\\n This paper discusses the relation between ΔK and the fatigue crack growth rate for cracks in low alloy steels exposed to air. Compressive-tensile cyclic loadings were applied to center-notched plates to obtain the fatigue crack growth curves. The test data demonstrated that effective SIF range ΔKeff more accurately described the crack growth property due to plasticity induced crack closure. Comparing the test results with the reference crack growth curves in the ASME Code Section XI, it may seem that the crack growth prediction based on the Code underestimates the crack growth rates for compressive-tensile cyclic loadings under high stress level.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低合金钢广泛应用于核电站压力边界部件。根据规范,应力强度因子ΔK的取值范围可用于确定材料的疲劳裂纹扩展速率。然而,有报道称,在强压缩载荷循环下,裂纹闭合行为也强烈影响疲劳裂纹扩展速率。本文讨论了低合金钢暴露在空气中的裂纹的疲劳裂纹扩展速率与ΔK的关系。对中心缺口板进行压缩-拉伸循环加载,得到疲劳裂纹扩展曲线。试验数据表明,有效SIF范围ΔKeff更准确地描述了塑性裂纹闭合引起的裂纹扩展特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Crack Growth in Low Alloy Steels Under Tension-Compression Loading in Air
Low alloy steels are extensively used in pressure boundary components of nuclear power plants. The structural integrity of the components made of low alloy steels can be evaluated by the procedure of flaw evaluation provided by Section XI of the ASME Boiler and Pressure Vessel Code. According to the Code, the range of stress intensity factor ΔK can be used to determine the fatigue crack growth rates of the material. However, it has been reported that crack closure behavior also strongly influence the fatigue crack growth rate under strong compressive load cycles. This paper discusses the relation between ΔK and the fatigue crack growth rate for cracks in low alloy steels exposed to air. Compressive-tensile cyclic loadings were applied to center-notched plates to obtain the fatigue crack growth curves. The test data demonstrated that effective SIF range ΔKeff more accurately described the crack growth property due to plasticity induced crack closure. Comparing the test results with the reference crack growth curves in the ASME Code Section XI, it may seem that the crack growth prediction based on the Code underestimates the crack growth rates for compressive-tensile cyclic loadings under high stress level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信