预测数学成功的在线辅导系统使用语言数据和点击流变量:纵向分析

S. Crossley, Shamya Karumbaiah, Jaclyn L. Ocumpaugh, Matthew J. Labrum, R. Baker
{"title":"预测数学成功的在线辅导系统使用语言数据和点击流变量:纵向分析","authors":"S. Crossley, Shamya Karumbaiah, Jaclyn L. Ocumpaugh, Matthew J. Labrum, R. Baker","doi":"10.4230/OASIcs.LDK.2019.25","DOIUrl":null,"url":null,"abstract":"Previous studies have demonstrated strong links between students’ linguistic knowledge, their affective language patterns and their success in math. Other studies have shown that demographic and click-stream variables in online learning environments are important predictors of math success. This study builds on this research in two ways. First, it combines linguistics and click-stream variables along with demographic information to increase prediction rates for math success. Second, it examines how random variance, as found in repeated participant data, can explain math success beyond linguistic, demographic, and click-stream variables. The findings indicate that linguistic, demographic, and click-stream factors explained about 14% of the variance in math scores. These variables mixed with random factors explained about 44% of the variance. 2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Applied computing → Mathematics and statistics; Computing methodologies → Natural language processing","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting Math Success in an Online Tutoring System Using Language Data and Click-Stream Variables: A Longitudinal Analysis\",\"authors\":\"S. Crossley, Shamya Karumbaiah, Jaclyn L. Ocumpaugh, Matthew J. Labrum, R. Baker\",\"doi\":\"10.4230/OASIcs.LDK.2019.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have demonstrated strong links between students’ linguistic knowledge, their affective language patterns and their success in math. Other studies have shown that demographic and click-stream variables in online learning environments are important predictors of math success. This study builds on this research in two ways. First, it combines linguistics and click-stream variables along with demographic information to increase prediction rates for math success. Second, it examines how random variance, as found in repeated participant data, can explain math success beyond linguistic, demographic, and click-stream variables. The findings indicate that linguistic, demographic, and click-stream factors explained about 14% of the variance in math scores. These variables mixed with random factors explained about 44% of the variance. 2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Applied computing → Mathematics and statistics; Computing methodologies → Natural language processing\",\"PeriodicalId\":377119,\"journal\":{\"name\":\"International Conference on Language, Data, and Knowledge\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Language, Data, and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.LDK.2019.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2019.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

先前的研究表明,学生的语言知识、情感语言模式和数学成绩之间存在着密切的联系。其他研究表明,在线学习环境中的人口统计和点击流变量是数学成功的重要预测因素。这项研究从两个方面建立在这项研究的基础上。首先,它将语言学和点击流变量与人口统计信息结合起来,以提高数学成功的预测率。其次,它考察了在重复的参与者数据中发现的随机方差如何能够解释语言、人口统计和点击流变量之外的数学成功。研究结果表明,语言、人口统计和点击流因素解释了数学成绩14%的差异。这些变量与随机因素混合在一起,解释了大约44%的方差。2012 ACM学科分类应用计算→计算机辅助教学;应用计算→数学与统计;计算方法→自然语言处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Math Success in an Online Tutoring System Using Language Data and Click-Stream Variables: A Longitudinal Analysis
Previous studies have demonstrated strong links between students’ linguistic knowledge, their affective language patterns and their success in math. Other studies have shown that demographic and click-stream variables in online learning environments are important predictors of math success. This study builds on this research in two ways. First, it combines linguistics and click-stream variables along with demographic information to increase prediction rates for math success. Second, it examines how random variance, as found in repeated participant data, can explain math success beyond linguistic, demographic, and click-stream variables. The findings indicate that linguistic, demographic, and click-stream factors explained about 14% of the variance in math scores. These variables mixed with random factors explained about 44% of the variance. 2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Applied computing → Mathematics and statistics; Computing methodologies → Natural language processing
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信