C. Femandez, Z. Pavlović, S. Kulkami, P. McCloskey, C. O'Mathúna
{"title":"两相硅耦合电感的高频、单/双相、大交流/直流信号功率特性","authors":"C. Femandez, Z. Pavlović, S. Kulkami, P. McCloskey, C. O'Mathúna","doi":"10.1109/APEC.2017.7931048","DOIUrl":null,"url":null,"abstract":"In this work, a new set-up is presented to characterize the large signal electrical parameters of on-Silicon integrated coupled inductors for Power Supply on Chip. The proposed system is suitable to perform the measurements under different large-signal test conditions given by the dc bias current up to 2 A and ac current through one or both windings, with amplitudes ranging from 0 A to 0.5 A at frequencies up to 120 MHz. Since a key issue when measuring at high-frequencies is the error due to the attenuation and time skew between the channels, an additional test is performed to characterize the measurement system and compensate the voltage and current waveforms.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High frequency, single/dual phases, large AC/DC signal power characterization for two phase on-silicon coupled inductors\",\"authors\":\"C. Femandez, Z. Pavlović, S. Kulkami, P. McCloskey, C. O'Mathúna\",\"doi\":\"10.1109/APEC.2017.7931048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new set-up is presented to characterize the large signal electrical parameters of on-Silicon integrated coupled inductors for Power Supply on Chip. The proposed system is suitable to perform the measurements under different large-signal test conditions given by the dc bias current up to 2 A and ac current through one or both windings, with amplitudes ranging from 0 A to 0.5 A at frequencies up to 120 MHz. Since a key issue when measuring at high-frequencies is the error due to the attenuation and time skew between the channels, an additional test is performed to characterize the measurement system and compensate the voltage and current waveforms.\",\"PeriodicalId\":201289,\"journal\":{\"name\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2017.7931048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7931048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High frequency, single/dual phases, large AC/DC signal power characterization for two phase on-silicon coupled inductors
In this work, a new set-up is presented to characterize the large signal electrical parameters of on-Silicon integrated coupled inductors for Power Supply on Chip. The proposed system is suitable to perform the measurements under different large-signal test conditions given by the dc bias current up to 2 A and ac current through one or both windings, with amplitudes ranging from 0 A to 0.5 A at frequencies up to 120 MHz. Since a key issue when measuring at high-frequencies is the error due to the attenuation and time skew between the channels, an additional test is performed to characterize the measurement system and compensate the voltage and current waveforms.