节能的多重生产者-消费者

R. Medhat, Borzoo Bonakdarpour, S. Fischmeister
{"title":"节能的多重生产者-消费者","authors":"R. Medhat, Borzoo Bonakdarpour, S. Fischmeister","doi":"10.1109/IPDPS.2014.75","DOIUrl":null,"url":null,"abstract":"Power efficiency has been one of the main objectives of hardware design in the last two decades. However, with the recent explosion of mobile computing and the increasing demand for green data centers, software power efficiency has also risen to be an equally important factor. We argue that most classic concurrency control algorithms were designed in an era when power efficiency was not an important dimension in algorithm design. Such algorithms are applied to solve a wide range of problems from kernel-level primitives in operating systems to networking devices and web services. These primitives and services are constantly and heavily invoked in any computer system and by larger scale in networking devices and data centers. Thus, even a small change in their power spectrum can make a huge impact on overall power consumption in long periods of time. This paper focuses on the classic producer-consumer problem. First, we study the power efficiency of different existing implementations of the producer-consumer problem. In particular, we present evidence that these implementations behave drastically differently with respect to power consumption. Secondly, we present a dynamic algorithm for the multiple producer-consumer problem, where consumers in a multicore system use learning mechanisms to predict the rate of production, and effectively utilize this prediction to attempt to latch onto previously scheduled CPU wake-ups. Such group latching results in minimizing the overall number of CPU wakeups and in effect, power consumption. We enable consumers to dynamically reserve more pre-allocated memory in cases where the production rate is too high. Consumers may compete for the extra space and dynamically release it when it is no longer needed. Our experiments show that our algorithm provides up to 40% decrease in the number of CPU wakeups, and 30% decrease in power consumption. We validate the scalability of our algorithm with an increasing number of consumers.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"30 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power-Efficient Multiple Producer-Consumer\",\"authors\":\"R. Medhat, Borzoo Bonakdarpour, S. Fischmeister\",\"doi\":\"10.1109/IPDPS.2014.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power efficiency has been one of the main objectives of hardware design in the last two decades. However, with the recent explosion of mobile computing and the increasing demand for green data centers, software power efficiency has also risen to be an equally important factor. We argue that most classic concurrency control algorithms were designed in an era when power efficiency was not an important dimension in algorithm design. Such algorithms are applied to solve a wide range of problems from kernel-level primitives in operating systems to networking devices and web services. These primitives and services are constantly and heavily invoked in any computer system and by larger scale in networking devices and data centers. Thus, even a small change in their power spectrum can make a huge impact on overall power consumption in long periods of time. This paper focuses on the classic producer-consumer problem. First, we study the power efficiency of different existing implementations of the producer-consumer problem. In particular, we present evidence that these implementations behave drastically differently with respect to power consumption. Secondly, we present a dynamic algorithm for the multiple producer-consumer problem, where consumers in a multicore system use learning mechanisms to predict the rate of production, and effectively utilize this prediction to attempt to latch onto previously scheduled CPU wake-ups. Such group latching results in minimizing the overall number of CPU wakeups and in effect, power consumption. We enable consumers to dynamically reserve more pre-allocated memory in cases where the production rate is too high. Consumers may compete for the extra space and dynamically release it when it is no longer needed. Our experiments show that our algorithm provides up to 40% decrease in the number of CPU wakeups, and 30% decrease in power consumption. We validate the scalability of our algorithm with an increasing number of consumers.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"30 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的二十年中,能效一直是硬件设计的主要目标之一。然而,随着最近移动计算的爆炸式增长和对绿色数据中心的需求不断增加,软件电源效率也上升为一个同样重要的因素。我们认为,大多数经典的并发控制算法是在功耗效率不是算法设计的重要维度的时代设计的。这些算法被应用于解决从操作系统中的内核级原语到网络设备和web服务的广泛问题。这些原语和服务在任何计算机系统中以及在网络设备和数据中心中被不断地大量调用。因此,即使功率谱的微小变化也会对长时间的整体功耗产生巨大影响。本文主要研究经典的生产者-消费者问题。首先,我们研究了现有不同的生产者-消费者问题实现的功率效率。特别是,我们提供的证据表明,这些实现在功耗方面的行为截然不同。其次,我们提出了一种针对多生产者-消费者问题的动态算法,其中多核系统中的消费者使用学习机制来预测生产速率,并有效地利用这种预测来尝试锁定先前计划的CPU唤醒。这种组锁存的结果是最小化CPU唤醒的总次数,实际上,减少了功耗。在生产速率过高的情况下,我们允许消费者动态保留更多预分配的内存。消费者可能会争夺额外的空间,并在不再需要时动态地释放它。我们的实验表明,我们的算法可以减少40%的CPU唤醒次数,减少30%的功耗。我们用越来越多的消费者来验证算法的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-Efficient Multiple Producer-Consumer
Power efficiency has been one of the main objectives of hardware design in the last two decades. However, with the recent explosion of mobile computing and the increasing demand for green data centers, software power efficiency has also risen to be an equally important factor. We argue that most classic concurrency control algorithms were designed in an era when power efficiency was not an important dimension in algorithm design. Such algorithms are applied to solve a wide range of problems from kernel-level primitives in operating systems to networking devices and web services. These primitives and services are constantly and heavily invoked in any computer system and by larger scale in networking devices and data centers. Thus, even a small change in their power spectrum can make a huge impact on overall power consumption in long periods of time. This paper focuses on the classic producer-consumer problem. First, we study the power efficiency of different existing implementations of the producer-consumer problem. In particular, we present evidence that these implementations behave drastically differently with respect to power consumption. Secondly, we present a dynamic algorithm for the multiple producer-consumer problem, where consumers in a multicore system use learning mechanisms to predict the rate of production, and effectively utilize this prediction to attempt to latch onto previously scheduled CPU wake-ups. Such group latching results in minimizing the overall number of CPU wakeups and in effect, power consumption. We enable consumers to dynamically reserve more pre-allocated memory in cases where the production rate is too high. Consumers may compete for the extra space and dynamically release it when it is no longer needed. Our experiments show that our algorithm provides up to 40% decrease in the number of CPU wakeups, and 30% decrease in power consumption. We validate the scalability of our algorithm with an increasing number of consumers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信