28.5 A 0.6V/0.9V 26.6至119.3µW ΔΣ-Based生物阻抗读出IC,信噪比101.9dB, 1/f角<0.1Hz

Tantan Zhang, Hyunwoo Son, Yuan Gao, Jingjing Lan, C. Heng
{"title":"28.5 A 0.6V/0.9V 26.6至119.3µW ΔΣ-Based生物阻抗读出IC,信噪比101.9dB, 1/f角<0.1Hz","authors":"Tantan Zhang, Hyunwoo Son, Yuan Gao, Jingjing Lan, C. Heng","doi":"10.1109/ISSCC42613.2021.9365801","DOIUrl":null,"url":null,"abstract":"Bio-impedance (BioZ) is an important physiological parameter in wearable healthcare sensing. Besides the inherent cardiac and respiratory information, BioZ can be also used for other emerging applications such as non-invasive blood status sensing [1]. A conventiona14-e1ectrode (4E) setup eliminates the effect of electrode-tissue impedance (ETI) at the expense of user comfort, system complexity, and cost. On the other hand, a 2-electrode (2E) setup avoids short-falls of 4E but can only capture relative changes of Bi0Z instead of its absolute value. In addition, a readout front-end (RFE) with wide dynamic range (DR) and high signal-to-noise ratio (SNR) is needed to deal with small BioZ variation (0.1$\\sim10\\Omega$) as well as large baseline resistance (>10k$\\Omega$). A conventional RFE architecture employing an instrumentation amplifier (IA) and ADC has to trade-off between resolution, DR and noise [2, 3]. Although flicker noise in the current generator (CG) is mitigated through dynamic element matching (DEM) [2], the reference current (IREF) noise issue remains unaddressed. In [5], digital-assisted baseline cancellation and IREF correlated noise cancellation are proposed, which help eliminate IREF noise and input-dependent noise [4] due to the large signal in the current-balance instrumentation amplifier (CBIA). Nevertheless, larger noise is still observed due to the finite residual current $(I_{res})$ from the baseline cancellation.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"28.5 A 0.6V/0.9V 26.6-to-119.3µW ΔΣ-Based Bio-Impedance Readout IC with 101.9dB SNR and <0.1Hz 1/f Corner\",\"authors\":\"Tantan Zhang, Hyunwoo Son, Yuan Gao, Jingjing Lan, C. Heng\",\"doi\":\"10.1109/ISSCC42613.2021.9365801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-impedance (BioZ) is an important physiological parameter in wearable healthcare sensing. Besides the inherent cardiac and respiratory information, BioZ can be also used for other emerging applications such as non-invasive blood status sensing [1]. A conventiona14-e1ectrode (4E) setup eliminates the effect of electrode-tissue impedance (ETI) at the expense of user comfort, system complexity, and cost. On the other hand, a 2-electrode (2E) setup avoids short-falls of 4E but can only capture relative changes of Bi0Z instead of its absolute value. In addition, a readout front-end (RFE) with wide dynamic range (DR) and high signal-to-noise ratio (SNR) is needed to deal with small BioZ variation (0.1$\\\\sim10\\\\Omega$) as well as large baseline resistance (>10k$\\\\Omega$). A conventional RFE architecture employing an instrumentation amplifier (IA) and ADC has to trade-off between resolution, DR and noise [2, 3]. Although flicker noise in the current generator (CG) is mitigated through dynamic element matching (DEM) [2], the reference current (IREF) noise issue remains unaddressed. In [5], digital-assisted baseline cancellation and IREF correlated noise cancellation are proposed, which help eliminate IREF noise and input-dependent noise [4] due to the large signal in the current-balance instrumentation amplifier (CBIA). Nevertheless, larger noise is still observed due to the finite residual current $(I_{res})$ from the baseline cancellation.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物阻抗(BioZ)是可穿戴医疗传感中重要的生理参数。除了固有的心脏和呼吸信息外,BioZ还可用于其他新兴应用,如无创血液状态传感[1]。传统的14-e1电极(4E)设置消除了电极组织阻抗(ETI)的影响,以牺牲用户舒适度、系统复杂性和成本为代价。另一方面,双电极(2E)设置避免了4E的不足,但只能捕获Bi0Z的相对变化,而不是其绝对值。此外,需要具有宽动态范围(DR)和高信噪比(SNR)的读出前端(RFE)来处理较小的BioZ变化(0.1 $\sim10\Omega$)和较大的基线电阻(>10k $\Omega$)。采用仪表放大器(IA)和ADC的传统RFE架构必须在分辨率、DR和噪声之间进行权衡[2,3]。虽然电流发生器(CG)中的闪烁噪声通过动态元素匹配(DEM)得到缓解[2],但参考电流(IREF)噪声问题仍未得到解决。文献[5]中提出了数字辅助基线对消和IREF相关噪声对消,有助于消除由于电流平衡仪表放大器(CBIA)信号较大而产生的IREF噪声和输入相关噪声[4]。然而,由于基线抵消产生的有限剩余电流$(I_{res})$,仍然观察到较大的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
28.5 A 0.6V/0.9V 26.6-to-119.3µW ΔΣ-Based Bio-Impedance Readout IC with 101.9dB SNR and <0.1Hz 1/f Corner
Bio-impedance (BioZ) is an important physiological parameter in wearable healthcare sensing. Besides the inherent cardiac and respiratory information, BioZ can be also used for other emerging applications such as non-invasive blood status sensing [1]. A conventiona14-e1ectrode (4E) setup eliminates the effect of electrode-tissue impedance (ETI) at the expense of user comfort, system complexity, and cost. On the other hand, a 2-electrode (2E) setup avoids short-falls of 4E but can only capture relative changes of Bi0Z instead of its absolute value. In addition, a readout front-end (RFE) with wide dynamic range (DR) and high signal-to-noise ratio (SNR) is needed to deal with small BioZ variation (0.1$\sim10\Omega$) as well as large baseline resistance (>10k$\Omega$). A conventional RFE architecture employing an instrumentation amplifier (IA) and ADC has to trade-off between resolution, DR and noise [2, 3]. Although flicker noise in the current generator (CG) is mitigated through dynamic element matching (DEM) [2], the reference current (IREF) noise issue remains unaddressed. In [5], digital-assisted baseline cancellation and IREF correlated noise cancellation are proposed, which help eliminate IREF noise and input-dependent noise [4] due to the large signal in the current-balance instrumentation amplifier (CBIA). Nevertheless, larger noise is still observed due to the finite residual current $(I_{res})$ from the baseline cancellation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信