集成接触式度量结构流形上的半对称度量连接

Shalini Singh
{"title":"集成接触式度量结构流形上的半对称度量连接","authors":"Shalini Singh","doi":"10.7439/IJASR.V2I12.3814","DOIUrl":null,"url":null,"abstract":"In 1924, A. Friedmann and J. A. Schoten [1] introduced the idea of a semi-symmetric linear connection in a differentiable manifold. Hayden [2] has introduced the idea of metric connection with torsion in a Riemannian manifold. The properties of semi-symmetric metric connection in a Riemannian manifold have been studied by Yano [3] and others [4], [5]. The purpose of the present paper is to study some properties of semi-symmetric metric connection on an integrated contact metric structure manifold [6], several useful algebraic and geometrical properties have been studied.","PeriodicalId":119953,"journal":{"name":"International Journal of Advances in Scientific Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-symmetric metric connection on an integrated contact metric structure manifold\",\"authors\":\"Shalini Singh\",\"doi\":\"10.7439/IJASR.V2I12.3814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1924, A. Friedmann and J. A. Schoten [1] introduced the idea of a semi-symmetric linear connection in a differentiable manifold. Hayden [2] has introduced the idea of metric connection with torsion in a Riemannian manifold. The properties of semi-symmetric metric connection in a Riemannian manifold have been studied by Yano [3] and others [4], [5]. The purpose of the present paper is to study some properties of semi-symmetric metric connection on an integrated contact metric structure manifold [6], several useful algebraic and geometrical properties have been studied.\",\"PeriodicalId\":119953,\"journal\":{\"name\":\"International Journal of Advances in Scientific Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7439/IJASR.V2I12.3814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7439/IJASR.V2I12.3814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1924年,a . Friedmann和J. a . Schoten[1]引入了可微流形中半对称线性连接的思想。Hayden[2]在黎曼流形中引入了度量与扭转的联系。Yano[3]等人[4],[5]研究了黎曼流形中半对称度量连接的性质。本文的目的是研究集成接触度量结构流形上的半对称度量连接的一些性质[6],研究了一些有用的代数和几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-symmetric metric connection on an integrated contact metric structure manifold
In 1924, A. Friedmann and J. A. Schoten [1] introduced the idea of a semi-symmetric linear connection in a differentiable manifold. Hayden [2] has introduced the idea of metric connection with torsion in a Riemannian manifold. The properties of semi-symmetric metric connection in a Riemannian manifold have been studied by Yano [3] and others [4], [5]. The purpose of the present paper is to study some properties of semi-symmetric metric connection on an integrated contact metric structure manifold [6], several useful algebraic and geometrical properties have been studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信