R. Marani, N. Mosca, V. Renó, M. Nitti, G. Cicirelli, E. Stella, T. D’orazio
{"title":"改进全向距离传感器的三维环境建模性能","authors":"R. Marani, N. Mosca, V. Renó, M. Nitti, G. Cicirelli, E. Stella, T. D’orazio","doi":"10.1109/ICSENST.2016.7796230","DOIUrl":null,"url":null,"abstract":"High resolution in distance (range) measurements can be achieved by means of accurate instrumentations and precise analytical models. This paper reports an improvement in the estimation of distance measurements performed by an omnidirectional range sensor already presented in literature. This sensor exploits the principle of laser triangulation, together with the advantages brought by catadioptric systems, which allow the reduction of the sensor size without decreasing the resolution. Starting from a known analytical model in two dimensions (2D), the paper shows the development of a fully 3D formulation where all initial constrains are removed to gain in measurement accuracy. Specifically, the ray projection problem is solved by considering that both the emitter and the receiver have general poses in a global system of coordinates. Calibration is thus made to estimate their poses and compensate for any misalignment with respect to the 2D approximation. Results prove an increase in the measurement accuracy due to the more general formulation of the problem, with a remarkable decrease of the uncertainty.","PeriodicalId":297617,"journal":{"name":"2016 10th International Conference on Sensing Technology (ICST)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving performance of an omnidirectional range sensor for 3D modeling of environments\",\"authors\":\"R. Marani, N. Mosca, V. Renó, M. Nitti, G. Cicirelli, E. Stella, T. D’orazio\",\"doi\":\"10.1109/ICSENST.2016.7796230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High resolution in distance (range) measurements can be achieved by means of accurate instrumentations and precise analytical models. This paper reports an improvement in the estimation of distance measurements performed by an omnidirectional range sensor already presented in literature. This sensor exploits the principle of laser triangulation, together with the advantages brought by catadioptric systems, which allow the reduction of the sensor size without decreasing the resolution. Starting from a known analytical model in two dimensions (2D), the paper shows the development of a fully 3D formulation where all initial constrains are removed to gain in measurement accuracy. Specifically, the ray projection problem is solved by considering that both the emitter and the receiver have general poses in a global system of coordinates. Calibration is thus made to estimate their poses and compensate for any misalignment with respect to the 2D approximation. Results prove an increase in the measurement accuracy due to the more general formulation of the problem, with a remarkable decrease of the uncertainty.\",\"PeriodicalId\":297617,\"journal\":{\"name\":\"2016 10th International Conference on Sensing Technology (ICST)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2016.7796230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2016.7796230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving performance of an omnidirectional range sensor for 3D modeling of environments
High resolution in distance (range) measurements can be achieved by means of accurate instrumentations and precise analytical models. This paper reports an improvement in the estimation of distance measurements performed by an omnidirectional range sensor already presented in literature. This sensor exploits the principle of laser triangulation, together with the advantages brought by catadioptric systems, which allow the reduction of the sensor size without decreasing the resolution. Starting from a known analytical model in two dimensions (2D), the paper shows the development of a fully 3D formulation where all initial constrains are removed to gain in measurement accuracy. Specifically, the ray projection problem is solved by considering that both the emitter and the receiver have general poses in a global system of coordinates. Calibration is thus made to estimate their poses and compensate for any misalignment with respect to the 2D approximation. Results prove an increase in the measurement accuracy due to the more general formulation of the problem, with a remarkable decrease of the uncertainty.