平均精度与ROC曲线下面积的关系

Wanhua Su, Yan Yuan, Mu Zhu
{"title":"平均精度与ROC曲线下面积的关系","authors":"Wanhua Su, Yan Yuan, Mu Zhu","doi":"10.1145/2808194.2809481","DOIUrl":null,"url":null,"abstract":"For similar evaluation tasks, the area under the receiver operating characteristic curve (AUC) is often used by researchers in machine learning, whereas the average precision (AP) is used more often by the information retrieval community. We establish some results to explain why this is the case. Specifically, we show that, when both the AUC and the AP are rescaled to lie in [0,1], the AP is approximately the AUC times the initial precision of the system.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"A Relationship between the Average Precision and the Area Under the ROC Curve\",\"authors\":\"Wanhua Su, Yan Yuan, Mu Zhu\",\"doi\":\"10.1145/2808194.2809481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For similar evaluation tasks, the area under the receiver operating characteristic curve (AUC) is often used by researchers in machine learning, whereas the average precision (AP) is used more often by the information retrieval community. We establish some results to explain why this is the case. Specifically, we show that, when both the AUC and the AP are rescaled to lie in [0,1], the AP is approximately the AUC times the initial precision of the system.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

对于类似的评估任务,接受者工作特征曲线下的面积(AUC)通常被研究人员用于机器学习,而平均精度(AP)则被信息检索界更多地使用。我们建立了一些结果来解释为什么会出现这种情况。具体来说,我们表明,当AUC和AP都被重新缩放到[0,1]中时,AP大约是AUC乘以系统的初始精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Relationship between the Average Precision and the Area Under the ROC Curve
For similar evaluation tasks, the area under the receiver operating characteristic curve (AUC) is often used by researchers in machine learning, whereas the average precision (AP) is used more often by the information retrieval community. We establish some results to explain why this is the case. Specifically, we show that, when both the AUC and the AP are rescaled to lie in [0,1], the AP is approximately the AUC times the initial precision of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信