一种在线学习矢量量化算法

S. Bharitkar, Dimitar Filev
{"title":"一种在线学习矢量量化算法","authors":"S. Bharitkar, Dimitar Filev","doi":"10.1109/ISSPA.2001.950163","DOIUrl":null,"url":null,"abstract":"We propose an online learning algorithm for the learning vector quantization (LVQ) approach in nonlinear supervised classification. The advantage of this approach is the ability of the LVQ to adjust its codebook vectors as new patterns become available, so as to accurately model the class representation of the patterns. Moreover this algorithm does not significantly increase the computational complexity over the original LVQ algorithm.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An online learning vector quantization algorithm\",\"authors\":\"S. Bharitkar, Dimitar Filev\",\"doi\":\"10.1109/ISSPA.2001.950163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an online learning algorithm for the learning vector quantization (LVQ) approach in nonlinear supervised classification. The advantage of this approach is the ability of the LVQ to adjust its codebook vectors as new patterns become available, so as to accurately model the class representation of the patterns. Moreover this algorithm does not significantly increase the computational complexity over the original LVQ algorithm.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.950163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

针对非线性监督分类中的学习向量量化(LVQ)方法,提出了一种在线学习算法。这种方法的优点是LVQ能够在新模式可用时调整其码本向量,以便准确地为模式的类表示建模。而且该算法与原LVQ算法相比,计算复杂度没有明显增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online learning vector quantization algorithm
We propose an online learning algorithm for the learning vector quantization (LVQ) approach in nonlinear supervised classification. The advantage of this approach is the ability of the LVQ to adjust its codebook vectors as new patterns become available, so as to accurately model the class representation of the patterns. Moreover this algorithm does not significantly increase the computational complexity over the original LVQ algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信