半监督分层聚类

Li Zheng, Tao Li
{"title":"半监督分层聚类","authors":"Li Zheng, Tao Li","doi":"10.1109/ICDM.2011.130","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering (i.e., clustering with knowledge-based constraints) has emerged as an important variant of the traditional clustering paradigms. However, most existing semi-supervised clustering algorithms are designed for partitional clustering methods and few research efforts have been reported on semi-supervised hierarchical clustering methods. In addition, current semi-supervised clustering methods have been focused on the use of background information in the form of instance level must-link and cannot-link constraints, which are not suitable for hierarchical clustering where data objects are linked over different hierarchy levels. In this paper, we propose a novel semi-supervised hierarchical clustering framework based on ultra-metric dendrogram distance. The proposed framework is able to incorporate triple-wise relative constraints. We establish the connection between hierarchical clustering and ultra-metric transformation of dissimilarity matrix and propose two techniques (the constrained optimization technique and the transitive dissimilarity based technique) for semi-supervised hierarchical clustering. Experimental results demonstrate the effectiveness and the efficiency of our proposed methods.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Semi-supervised Hierarchical Clustering\",\"authors\":\"Li Zheng, Tao Li\",\"doi\":\"10.1109/ICDM.2011.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised clustering (i.e., clustering with knowledge-based constraints) has emerged as an important variant of the traditional clustering paradigms. However, most existing semi-supervised clustering algorithms are designed for partitional clustering methods and few research efforts have been reported on semi-supervised hierarchical clustering methods. In addition, current semi-supervised clustering methods have been focused on the use of background information in the form of instance level must-link and cannot-link constraints, which are not suitable for hierarchical clustering where data objects are linked over different hierarchy levels. In this paper, we propose a novel semi-supervised hierarchical clustering framework based on ultra-metric dendrogram distance. The proposed framework is able to incorporate triple-wise relative constraints. We establish the connection between hierarchical clustering and ultra-metric transformation of dissimilarity matrix and propose two techniques (the constrained optimization technique and the transitive dissimilarity based technique) for semi-supervised hierarchical clustering. Experimental results demonstrate the effectiveness and the efficiency of our proposed methods.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

半监督聚类(即基于知识约束的聚类)已经成为传统聚类范式的一个重要变体。然而,现有的半监督聚类算法大多是针对局部聚类方法设计的,对半监督分层聚类方法的研究很少。此外,目前的半监督聚类方法主要集中在使用实例级必须链接和不能链接约束形式的背景信息,不适合数据对象在不同层次上链接的分层聚类。本文提出了一种基于超度量树图距离的半监督分层聚类框架。所建议的框架能够合并三重相对约束。建立了层次聚类与非相似矩阵的超度量变换之间的联系,提出了两种半监督层次聚类技术(约束优化技术和基于传递性非相似矩阵的技术)。实验结果证明了所提方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised Hierarchical Clustering
Semi-supervised clustering (i.e., clustering with knowledge-based constraints) has emerged as an important variant of the traditional clustering paradigms. However, most existing semi-supervised clustering algorithms are designed for partitional clustering methods and few research efforts have been reported on semi-supervised hierarchical clustering methods. In addition, current semi-supervised clustering methods have been focused on the use of background information in the form of instance level must-link and cannot-link constraints, which are not suitable for hierarchical clustering where data objects are linked over different hierarchy levels. In this paper, we propose a novel semi-supervised hierarchical clustering framework based on ultra-metric dendrogram distance. The proposed framework is able to incorporate triple-wise relative constraints. We establish the connection between hierarchical clustering and ultra-metric transformation of dissimilarity matrix and propose two techniques (the constrained optimization technique and the transitive dissimilarity based technique) for semi-supervised hierarchical clustering. Experimental results demonstrate the effectiveness and the efficiency of our proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信