{"title":"基于卷积神经网络的视网膜血管检测方法","authors":"A. Şengür, Yanhui Guo, Ümit Budak, Lucas J. Vespa","doi":"10.1109/IDAP.2017.8090331","DOIUrl":null,"url":null,"abstract":"Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV detection is still a challenging problem due to variations in morphology of the vessels on a noisy background. In this paper, we formulate the detection task as a classification problem and solve it using a convolutional neural network (CNN) as a two-class classifier. The proposed model has 2 convolution layers, 2 pooling layers, 1 dropout layer and 1 loss layer. The proposed CNN achieves better performance and significantly outperforms the state-of-the-art for automatic retinal vessel segmentation on the DRIVE dataset with 91.78% accuracy and 0.96743 AUC score. We further compare our result with several state of the art methods based on AUC values. The comparison shows that our proposal yields the second best AUC value. This demonstrates the efficiency of the proposed method which has no pre-processing steps.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A retinal vessel detection approach using convolution neural network\",\"authors\":\"A. Şengür, Yanhui Guo, Ümit Budak, Lucas J. Vespa\",\"doi\":\"10.1109/IDAP.2017.8090331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV detection is still a challenging problem due to variations in morphology of the vessels on a noisy background. In this paper, we formulate the detection task as a classification problem and solve it using a convolutional neural network (CNN) as a two-class classifier. The proposed model has 2 convolution layers, 2 pooling layers, 1 dropout layer and 1 loss layer. The proposed CNN achieves better performance and significantly outperforms the state-of-the-art for automatic retinal vessel segmentation on the DRIVE dataset with 91.78% accuracy and 0.96743 AUC score. We further compare our result with several state of the art methods based on AUC values. The comparison shows that our proposal yields the second best AUC value. This demonstrates the efficiency of the proposed method which has no pre-processing steps.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A retinal vessel detection approach using convolution neural network
Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV detection is still a challenging problem due to variations in morphology of the vessels on a noisy background. In this paper, we formulate the detection task as a classification problem and solve it using a convolutional neural network (CNN) as a two-class classifier. The proposed model has 2 convolution layers, 2 pooling layers, 1 dropout layer and 1 loss layer. The proposed CNN achieves better performance and significantly outperforms the state-of-the-art for automatic retinal vessel segmentation on the DRIVE dataset with 91.78% accuracy and 0.96743 AUC score. We further compare our result with several state of the art methods based on AUC values. The comparison shows that our proposal yields the second best AUC value. This demonstrates the efficiency of the proposed method which has no pre-processing steps.