SEA-CNN:时空数据库中连续k近邻查询的可扩展处理

Xiaopeng Xiong, M. Mokbel, Walid G. Aref
{"title":"SEA-CNN:时空数据库中连续k近邻查询的可扩展处理","authors":"Xiaopeng Xiong, M. Mokbel, Walid G. Aref","doi":"10.1109/ICDE.2005.128","DOIUrl":null,"url":null,"abstract":"Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":"{\"title\":\"SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases\",\"authors\":\"Xiaopeng Xiong, M. Mokbel, Walid G. Aref\",\"doi\":\"10.1109/ICDE.2005.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

摘要

位置感知环境具有大量对象和大量连续查询的特点。对象和连续查询都可能随时间改变它们的位置。在本文中,我们主要研究连续k近邻查询(CKNN,简称)。我们提出了一种新的算法,称为SEA-CNN,用于连续回答并发CKNN查询的集合。SEA-CNN有两个重要的特点:增量评估和共享执行。SEA-CNN在存在一组并发查询的情况下实现了效率和可扩展性。此外,SEA-CNN没有对物体的运动进行任何假设,例如物体的速度和轨迹形状,也没有对物体和/或查询的可变性进行任何假设,例如,对运动或静止的物体发出的移动或静止的查询。我们从执行成本、内存需求和可调参数的影响等方面对SEA-CNN进行了理论分析。综合实验表明,与其他基于r树的CKNN技术相比,SEA-CNN具有高度可扩展性,并且在I/O和CPU成本方面更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases
Location-aware environments are characterized by a large number of objects and a large number of continuous queries. Both the objects and continuous queries may change their locations over time. In this paper, we focus on continuous k-nearest neighbor queries (CKNN, for short). We present a new algorithm, termed SEA-CNN, for answering continuously a collection of concurrent CKNN queries. SEA-CNN has two important features: incremental evaluation and shared execution. SEA-CNN achieves both efficiency and scalability in the presence of a set of concurrent queries. Furthermore, SEA-CNN does not make any assumptions about the movement of objects, e.g., the objects velocities and shapes of trajectories, or about the mutability of the objects and/or the queries, i.e., moving or stationary queries issued on moving or stationary objects. We provide theoretical analysis of SEA-CNN with respect to the execution costs, memory requirements and effects of tunable parameters. Comprehensive experimentation shows that SEA-CNN is highly scalable and is more efficient in terms of both I/O and CPU costs in comparison to other R-tree-based CKNN techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信