N. Gulur, R. Manikantan, R. Govindarajan, M. Mehendale
{"title":"行缓冲器重组:同时提高dram的性能和降低能量","authors":"N. Gulur, R. Manikantan, R. Govindarajan, M. Mehendale","doi":"10.1109/PACT.2011.34","DOIUrl":null,"url":null,"abstract":"In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Row-Buffer Reorganization: Simultaneously Improving Performance and Reducing Energy in DRAMs\",\"authors\":\"N. Gulur, R. Manikantan, R. Govindarajan, M. Mehendale\",\"doi\":\"10.1109/PACT.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.\",\"PeriodicalId\":106423,\"journal\":{\"name\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Row-Buffer Reorganization: Simultaneously Improving Performance and Reducing Energy in DRAMs
In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.