基于浅卷积神经网络的植物叶片病害识别

Xun Liu, Yuying Li, NianQing Cai, W. Kuang, Guoqing Xia, Fangyu Lei
{"title":"基于浅卷积神经网络的植物叶片病害识别","authors":"Xun Liu, Yuying Li, NianQing Cai, W. Kuang, Guoqing Xia, Fangyu Lei","doi":"10.1109/INSAI54028.2021.00067","DOIUrl":null,"url":null,"abstract":"Existing popular methods for the recognition of plant leaf diseases with deep convolutional neural networks (DCNNs) improve the learning ability of traditional models by automatically learning the features of leaf images. However, these deep networks suffer from the concerns in terms of many parameters and high time complexity. To solve the limits, we propose a novel identification model (SCNN) of the plant leaf diseases based on shallow CNN. In SCNN, we reduce the number of parameters and the complexity by designing a new shallow network based on the deep learning technologies (BN and Dropout). Comprehensive evaluations on PlantVillage dataset demonstrate that our SCNN achieves state-of-the-art results.","PeriodicalId":232335,"journal":{"name":"2021 International Conference on Networking Systems of AI (INSAI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Plant Leaf Diseases Based on Shallow Convolutional Neural Network\",\"authors\":\"Xun Liu, Yuying Li, NianQing Cai, W. Kuang, Guoqing Xia, Fangyu Lei\",\"doi\":\"10.1109/INSAI54028.2021.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing popular methods for the recognition of plant leaf diseases with deep convolutional neural networks (DCNNs) improve the learning ability of traditional models by automatically learning the features of leaf images. However, these deep networks suffer from the concerns in terms of many parameters and high time complexity. To solve the limits, we propose a novel identification model (SCNN) of the plant leaf diseases based on shallow CNN. In SCNN, we reduce the number of parameters and the complexity by designing a new shallow network based on the deep learning technologies (BN and Dropout). Comprehensive evaluations on PlantVillage dataset demonstrate that our SCNN achieves state-of-the-art results.\",\"PeriodicalId\":232335,\"journal\":{\"name\":\"2021 International Conference on Networking Systems of AI (INSAI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking Systems of AI (INSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INSAI54028.2021.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking Systems of AI (INSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INSAI54028.2021.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有流行的植物叶片病害识别方法是利用深度卷积神经网络(deep convolutional neural network, DCNNs)自动学习叶片图像的特征,从而提高传统模型的学习能力。然而,这些深度网络存在着参数多、时间复杂度高等问题。为了解决这一问题,本文提出了一种基于浅神经网络的植物叶片病害识别模型。在SCNN中,我们基于深度学习技术(BN和Dropout)设计了一种新的浅层网络,减少了参数的数量和复杂度。对PlantVillage数据集的综合评估表明,我们的SCNN达到了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Plant Leaf Diseases Based on Shallow Convolutional Neural Network
Existing popular methods for the recognition of plant leaf diseases with deep convolutional neural networks (DCNNs) improve the learning ability of traditional models by automatically learning the features of leaf images. However, these deep networks suffer from the concerns in terms of many parameters and high time complexity. To solve the limits, we propose a novel identification model (SCNN) of the plant leaf diseases based on shallow CNN. In SCNN, we reduce the number of parameters and the complexity by designing a new shallow network based on the deep learning technologies (BN and Dropout). Comprehensive evaluations on PlantVillage dataset demonstrate that our SCNN achieves state-of-the-art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信