对标:分类模型如何处理高维特征

Nuno Pombo, Eduardo Paulos
{"title":"对标:分类模型如何处理高维特征","authors":"Nuno Pombo, Eduardo Paulos","doi":"10.1109/AICT55583.2022.10013555","DOIUrl":null,"url":null,"abstract":"The increasingly proliferation of interconnected and ubiquitous devices, sensors, and online platforms generates a multitude of data around the clock. These data may result in meaningful information since they are processed through adequate features extraction and selection methods, along with classifiers. This study aims to benchmark multiple classifiers, and to combine features from the ECG signal into the context of the sleep apnea diagnosis. The main findings may be summarised as follows: 1) the Radial-kernel-based Support Vector Machine performs the best, using normalised features, and 2) when a feature ranking technique is used then the Multi-layer Perceptron performs the best accuracy.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking How Classification Models Deal with High Dimension of Features\",\"authors\":\"Nuno Pombo, Eduardo Paulos\",\"doi\":\"10.1109/AICT55583.2022.10013555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasingly proliferation of interconnected and ubiquitous devices, sensors, and online platforms generates a multitude of data around the clock. These data may result in meaningful information since they are processed through adequate features extraction and selection methods, along with classifiers. This study aims to benchmark multiple classifiers, and to combine features from the ECG signal into the context of the sleep apnea diagnosis. The main findings may be summarised as follows: 1) the Radial-kernel-based Support Vector Machine performs the best, using normalised features, and 2) when a feature ranking technique is used then the Multi-layer Perceptron performs the best accuracy.\",\"PeriodicalId\":441475,\"journal\":{\"name\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT55583.2022.10013555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互联和无处不在的设备、传感器和在线平台日益激增,昼夜不停地产生大量数据。这些数据可能会产生有意义的信息,因为它们通过适当的特征提取和选择方法以及分类器进行处理。本研究旨在对多个分类器进行基准测试,并将心电信号的特征结合到睡眠呼吸暂停诊断的背景中。主要发现可以总结如下:1)基于径向核的支持向量机在使用归一化特征时表现最好,2)当使用特征排序技术时,多层感知器表现出最好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking How Classification Models Deal with High Dimension of Features
The increasingly proliferation of interconnected and ubiquitous devices, sensors, and online platforms generates a multitude of data around the clock. These data may result in meaningful information since they are processed through adequate features extraction and selection methods, along with classifiers. This study aims to benchmark multiple classifiers, and to combine features from the ECG signal into the context of the sleep apnea diagnosis. The main findings may be summarised as follows: 1) the Radial-kernel-based Support Vector Machine performs the best, using normalised features, and 2) when a feature ranking technique is used then the Multi-layer Perceptron performs the best accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信