应用于电动汽车混合储能系统的混合控制器性能及对比分析

Raghavaiah Katuri, S. Gorantla
{"title":"应用于电动汽车混合储能系统的混合控制器性能及对比分析","authors":"Raghavaiah Katuri, S. Gorantla","doi":"10.1109/ICEES.2019.8719308","DOIUrl":null,"url":null,"abstract":"The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.","PeriodicalId":421791,"journal":{"name":"2019 Fifth International Conference on Electrical Energy Systems (ICEES)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance and Comparative Analysis of Hybrid Controllers Implemented to Hybrid Energy Storage System of Electric Vehicles\",\"authors\":\"Raghavaiah Katuri, S. Gorantla\",\"doi\":\"10.1109/ICEES.2019.8719308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.\",\"PeriodicalId\":421791,\"journal\":{\"name\":\"2019 Fifth International Conference on Electrical Energy Systems (ICEES)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Fifth International Conference on Electrical Energy Systems (ICEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2019.8719308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fifth International Conference on Electrical Energy Systems (ICEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2019.8719308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本工作的主要目的是提出一种新的控制方法,以实现电动汽车混合储能系统(HESS)电池和超级电容器(UC)之间的平稳过渡。UC用于满足峰值功率需求,正常功率需求可由电池发送,作为基极电源。基于数学函数(MFB)的控制器是采用与电机转速相对应的四个独立的数学函数来设计的。所设计的MFB控制器与模糊逻辑/人工神经网络(ANN)控制器相结合,形成了一种新的混合控制器,可以对单向变换器(UDC)或双向变换器(BDC)产生控制脉冲。最后,采用两种混合控制器设计了整个电路,并在MATLAB/Simulink中进行了仿真,并根据不同因素进行了性能分析,给出了所有测量值,显示了控制器在不同模式下的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and Comparative Analysis of Hybrid Controllers Implemented to Hybrid Energy Storage System of Electric Vehicles
The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信