{"title":"应用于电动汽车混合储能系统的混合控制器性能及对比分析","authors":"Raghavaiah Katuri, S. Gorantla","doi":"10.1109/ICEES.2019.8719308","DOIUrl":null,"url":null,"abstract":"The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.","PeriodicalId":421791,"journal":{"name":"2019 Fifth International Conference on Electrical Energy Systems (ICEES)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance and Comparative Analysis of Hybrid Controllers Implemented to Hybrid Energy Storage System of Electric Vehicles\",\"authors\":\"Raghavaiah Katuri, S. Gorantla\",\"doi\":\"10.1109/ICEES.2019.8719308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.\",\"PeriodicalId\":421791,\"journal\":{\"name\":\"2019 Fifth International Conference on Electrical Energy Systems (ICEES)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Fifth International Conference on Electrical Energy Systems (ICEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2019.8719308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fifth International Conference on Electrical Energy Systems (ICEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2019.8719308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance and Comparative Analysis of Hybrid Controllers Implemented to Hybrid Energy Storage System of Electric Vehicles
The main objective of this work is to propose a new control approach for a smooth transition between Battery and Ultracapacitor (UC) of Hybrid Energy Storage System (HESS) for Electric Vehicle (EV) application. The UC is used for peak power requirement and normal power requirement can be send by the battery and acts as a base source. Math Function Based (MFB) controller is designed by taking four individual math functions corresponding to the speed the motor. The designed MFB controller combined with Fuzzy logic/artificial neural network (ANN) controller procedures a new hybrid controller with that able to generate the control pulses to the converter, which may be unidirectional converter (UDC) or Bidirectional converter (BDC). Finally, entire circuit has been designed with two hybrid controllers and simulated in MATLAB/Simulink and performance analysis also made based on different factors, all measured values are presented, and which shows the controller action for different modes of the EV.