{"title":"一种地形非负矩阵分解算法","authors":"Nicoleta Rogovschi, Lazhar Labiod, M. Nadif","doi":"10.1109/IJCNN.2013.6706849","DOIUrl":null,"url":null,"abstract":"We explore in this paper a novel topological organization algorithm for data clustering and visualization named TPNMF. It leads to a clustering of the data, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a NMF (Nonnegative Matrix Factorization) formalism using a neighborhood function which take into account the topological order of the data. TPNMF was validated on variant real datasets and the experimental results show a good quality of the topological ordering and homogenous clustering.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A topographical nonnegative matrix factorization algorithm\",\"authors\":\"Nicoleta Rogovschi, Lazhar Labiod, M. Nadif\",\"doi\":\"10.1109/IJCNN.2013.6706849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore in this paper a novel topological organization algorithm for data clustering and visualization named TPNMF. It leads to a clustering of the data, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a NMF (Nonnegative Matrix Factorization) formalism using a neighborhood function which take into account the topological order of the data. TPNMF was validated on variant real datasets and the experimental results show a good quality of the topological ordering and homogenous clustering.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A topographical nonnegative matrix factorization algorithm
We explore in this paper a novel topological organization algorithm for data clustering and visualization named TPNMF. It leads to a clustering of the data, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a NMF (Nonnegative Matrix Factorization) formalism using a neighborhood function which take into account the topological order of the data. TPNMF was validated on variant real datasets and the experimental results show a good quality of the topological ordering and homogenous clustering.